Class 09

Search Results for:

1. Introduction

What this Chapter Covers
  • Cell as the unit of life: This chapter teaches that the cell is the basic building block of all living things, whether plants or animals.
  • Protoplasm: You’ll learn about protoplasm, the living substance found inside every cell.
  • Prokaryotic vs. Eukaryotic cells: The difference between cells with a true nucleus (eukaryotic) and those without (prokaryotic) is explored.
  • Plant cell vs. Animal cell: The chapter compares plant and animal cells, particularly focusing on cell wall, centrosome, vacuoles, and plastids.
  • Cell Structure and Organelles: You’ll study the structure of both plant and animal cells. Special attention is given to each cell part and organelle, such as:
    • Cell Membrane
    • Cell Wall
    • Nucleus & Nucleolus
    • Mitochondria
    • Endoplasmic Reticulum
    • Ribosome
    • Golgi Bodies
    • Plastids
    • Lysosomes
    • Centrosome
    • Vacuole
Key Takeaways
  • The cell theory and its basics are a crucial foundation.
  • The functions of each cell organelle are discussed.
  • Differences between plant and animal cells are highlighted for better understanding.

This chapter builds your concepts for further studies in biology, helping you understand how all living organisms function at the cellular level.


इस Chapter में क्या-क्या पढ़ना है?
  • Cell as the unit of life: इसमें आपको cell के बारे में सीखना है, जो हर जीव-जन्तु और पौधे का सबसे बुनियादी हिस्सा है।
  • Protoplasm: आपको protoplasm के बारे में जानकारी मिलेगी, जो cell के अंदर पाई जाती है और जिसके कारण cell जिंदा होता है।
  • Prokaryotic और Eukaryotic Cells का difference: इसमें आप जानेंगे कि कुछ cells में nucleus नहीं होता (prokaryotic) और कुछ में proper nucleus होता है (eukaryotic)।
  • Animal cell और Plant cell का difference: आप animal cells और plant cells की तुलना करना सीखेंगे, खासतौर पर cell wall, centrosome, vacuoles, plastids के मामले में।
  • Cell Structure और Organelles: आप cell के structure को समझेंगे यानी cell के सभी भाग (organelles) जैसे –
    • Cell Membrane
    • Cell Wall
    • Nucleus, Nucleolus
    • Mitochondria
    • Endoplasmic Reticulum
    • Ribosome
    • Golgi Bodies
    • Plastids
    • Lysosomes
    • Centrosome
    • Vacuole
मुख्य बातें
  • Cell theory और उसकी तीन basic बातें समझनी हैं।
  • हर organelle का function समझना है।
  • Plant cell और animal cell में क्या differences हैं, इनको भी अच्छे से जानना है।

यह Chapter आपको biology के basic concepts मजबूत करने में मदद करेगा, ताकि आप आगे biology पढ़ सकें और जान सकें कि हर जीव चीज़ किस तरह से काम करती है।



2. THE INVENTION OF THE MICROSCOPE AND THE DISCOVERY OF CELL



The first microscope was constructed by Dutch scientist Antony van Leeuwenhoek (1632–1723). He was an ordinary public official who used to grind lenses and make microscopic observations as a hobby. It is said that he constructed around 400 microscopes. All his microscopes had a single biconvex lens and were called simple microscopes. Some of these could magnify objects up to 200 times. In Leeuwenhoek’s microscope, you had to look closely at the lens from one side and place the object on a needle-like screw point on the other side.
Robert Hooke (1635–1703), an English scientist, developed a microscope that used two lenses for higher magnification. These were known as compound microscopes. In Hooke’s microscope, the object was placed below, and light from an oil lamp was focused on it using a concave mirror.
Hooke examined a thin slice of cork under his microscope and noticed that it was made of many tiny “boxlike” compartments stacked together. These looked like the rooms (cells) in a monastery, so he called them “cells.” What Hooke saw were all dead cells—the empty box-walls.
The modern compound microscope is a much-improved version of Hooke’s original design.
After this, the invention of the electron microscope enabled scientists to discover many more facts about cells. The electron microscope can magnify up to 200,000 times, whereas an ordinary compound microscope can magnify up to about 2,000 times. The compound microscope uses light, bent by glass lenses, to magnify images, whereas the electron microscope uses beams of electrons, bent by magnets, for magnification.

PROGRESS CHECK
Name the following:
(i) The kind of microscope that consists of a single biconvex lens.
(ii) The kind of mirror used for throwing light on the object in Hooke’s microscope.
What is the maximum magnification that can usually be achieved by:
(i) a compound microscope
(ii) an electron microscope


सबसे पहला microscope Dutch scientist Antony van Leeuwenhoek (1632-1723) ने बनाया था। वो एक normal public official थे, जिन्हें lens बनाना और microscopic observations करना hobby के तौर पर अच्छा लगता था। ऐसा कहा जाता है कि उन्होंने करीब 400 microscopes बनाये। उनके सभी microscopes में एक single biconvex lens होता था और इन्हें simple microscope कहा जाता था। इनमें से कुछ microscope 200 times तक image को बड़ा कर सकते थे। Leeuwenhoek के microscope में एक side पर आँख lens के पास लगती थी और दूसरी side पर object एक needle जैसे screw point पर रखा जाता था।
Robert Hooke (1635-1703), जो एक English scientist थे, उन्होंने दो lens use करके microscope बनाया जिससे और ज्यादा magnification मिल सके। ऐसे microscopes को compound microscope कहा जाने लगा। Hooke के microscope में object नीचे stage पर रखा जाता था और oil lamp की light एक concave mirror से object पर focus की जाती थी।
Hooke ने एक पतली cork slice को अपने microscope में देखा और इसमें छोटे-छोटे “boxlike” compartments notice किये। ये box वैसे दिख रहे थे जैसे monastery में monk के rooms होते हैं, इसलिए उन्होंने इन्हें “cells” नाम दे दिया। जो cells Hooke ने देखे थे, वो सब dead cells थे, सिवाय खाली दीवारों (walls) के।
Aaj ka modern compound microscope, Hooke के design से भी ज्यादा advanced है।
इसके बाद electron microscope ke invention ने scientists को cells के बारे में और भी ज्यादा details जानने में मदद की। Electron microscope में magnification power 200,000 times तक हो सकती है, वहीं ordinary compound microscope लगभग 2,000 times तक magnify करता है। Compound microscope में glass lenses से light को bend करके image बड़ी की जाती है, जबकि electron microscope में electrons की beams को magnet से bend करा जाता है ताकि image को magnify किया जा सके।

PROGRESS CHECK
Name the following:
(i) वह microscope जिसमें single biconvex lens होता है।
(ii) Hooke के microscope में object पर light डालने के लिए किस type का mirror use होता है?
Maximum magnification कितनी achieve की जा सकती है:
(i) Compound microscope से
(ii) Electron microscope से



3. CELL THEORY


In 1838, Matthias Schleiden, a German botanist, announced that every plant is made up of a large number of cells. He added that each of these cells performed various life processes. A year later, Theodor Schwann, a German zoologist, made similar discoveries in animals. He declared that all animals and plants are composed of cells, which serve as the units of structure and function. This, in short, is called the Cell Theory, having been proposed by Schwann and Schleiden in the year 1839. Rudolf Virchow in 1858 made an addition to the cell theory by saying that all cells arise from pre-existing cells.

The Cell Theory states three major points:

  1. The cell is the smallest unit of structure of all living things.
  2. The cell is the unit of function of all living things.
  3. All cells arise from pre-existing cells.

What does the cell theory mean? Take two examples, a plant such as mango and an animal such as a frog.

  • Structural Unit: If we take any part of the body of a frog or any part of a mango plant and examine it under a microscope, it will show a cellular structure.
  • Functional Unit: Any function in the body of the frog or in the mango plant is due to the activity in its cells. For example, movement of the frog is due to the contractions of muscle cells, food is digested by the enzymes which the cells of the gut secrete, digested food is absorbed by the cells and absorbed food is used up in cells for various metabolic activities. In a mango plant, photosynthesis occurs in the cells of leaves, the root cells absorb water from the soil, and so on.
  • Cells die and are replaced: The body of the frog, or of the mango tree, is composed of millions and millions of cells. Many of these cells continuously die and are replaced by new ones which are formed by the division of younger cells. Formation of cells from pre-existing cells is a never-ending chain.
  • All life starts as a single cell: The life of the frog and the life of the mango tree started as an egg and as a seed respectively. The egg was a single cell produced by the cells of the ovary of the mother frog. The mango seed had an embryo which also started as a single cell in the ovary of the flowers of the parent mango tree.


1838 में Matthias Schleiden, जो एक German Botanist थे, ने announce किया कि हर plant बहुत सारी cells से बना होता है। उन्होंने कहा कि ये हर cell कई life processes perform करता है। एक साल बाद, Theodor Schwann, जो एक German Zoologist थे, ने animals में भी ऐसा ही पाया। उन्होंने कहा कि सभी animals और plants cells से बने होते हैं, जो उनकी structure और function की units होती हैं। इसे ही short में Cell Theory कहते हैं, जिसे Schwann और Schleiden ने 1839 में propose किया था। 1858 में Rudolf Virchow ने इस theory में add किया कि सभी cells पहले से मौजूद cells से ही बनती हैं।

Cell Theory के तीन मुख्य points हैं:

  1. Cell सभी living चीजों की सबसे छोटी structural unit है।
  2. Cell सभी living चीजों की functional unit है।
  3. सभी cells पहले से मौजूद cells से बनती हैं।

अब समझते हैं Cell Theory का मतलब। ले लेते हैं दो examples – एक plant जैसे mango और एक animal जैसे frog।

  • Structural Unit: अगर हम frog के body का कोई भाग या mango plant का कोई part microscope में देखें, तो हमें cells ही नजर आएंगी।
  • Functional Unit: frog या mango के शरीर का कोई भी काम cells की activity की वजह से होता है। जैसे frog का movement muscle cells के contract होने से होता है, खाना digest enzymes cells produce करती हैं, digested food cells absorb करती हैं और वो food cells में energy या बाकी metabolic कामों के लिए use होता है। mango plant में photosynthesis leaves की cells में होता है, और root cells मिट्टी से पानी absorb करती हैं।
  • Cells मरती हैं और नई बनती हैं: frog या mango के body में लाखों करोड़ों cells होते हैं। उनमें से कई cells continuously मरती हैं और नई cells young cells के division से बनती रहती हैं। ये सिलसिला चलता रहता है।
  • सारा जीवन एक single cell से शुरू होता है: frog का life एक egg से शुरू होता है, और mango plant का life seed से। ये egg frog की mother के ovary की cells से बनती है। mango seed का embryo भी एक single cell से शुरू होता है, जो parent mango के flower के ovary में होता है।


4. CELLS – HOW NUMEROUS?


The number of cells in an organism depends on its size — the larger the organism, the greater the number of cells in its body.

  • Single-celled organisms: Many small plants and animals consist of just one cell. Examples are bacteria, yeast, and amoeba.
  • Few-celled organisms: Some very small plants and animals have relatively few cells — just a few hundred or a few thousand. Examples include Spirogyra and Volvox.
  • Multi-celled organisms: Most plants and animals we see, including humans, have millions or billions of cells. Examples are human beings and mango trees.

An average adult human has approximately:

  • 1,000 million million (trillion) cells,
  • 10,000 million nerve cells in the brain cortex,
  • 5-6 million red blood cells and 7,000 white blood cells per cubic millimeter of blood.

Organism का size जितना बड़ा होगा, उसके body में cells की संख्या भी उतनी ज्यादा होगी।

  • Single-celled organisms: कुछ छोटे plants और animals सिर्फ एक ही cell से बने होते हैं। जैसे bacteria, yeast, amoeba।
  • Few-celled organisms: कुछ छोटे plants और animals में थोड़ी संख्या में cells होती हैं, जैसे Spirogyra, Volvox।
  • Multi-celled organisms: ज्यादातर plants और animals, जैसे humans और mango के पेड़, लाखों करोड़ों cells से बने होते हैं।

एक average size adult human body में लगभग:

  • 1,000 million million यानी trillion cells होती हैं,
  • दिमाग़ की cortex में 10,000 million nerve cells होते हैं,
  • और blood में 5-6 million red blood cells और 7 हजार white blood cells हर cubic millimeter में होते हैं।


5. CELLS – HOW SMALL? 


Cells are very small and can only be seen with the help of a microscope.

  • The smallest cells are bacteria (0.3 to 5 micrometers).
  • Human red blood cells are about 7 micrometers in size.
  • The longest cells are nerve cells, which can extend from the fingertip to the spinal cord.
  • The largest cells are bird eggs, mainly the central yellow sphere. For example, the ostrich egg is the largest single cell.

SMALLNESS OF CELLS: A GREATER EFFICIENCY

Cells usually remain small for two main reasons:

  1. Different parts of a cell need to communicate rapidly for efficient functioning.
  2. Small cells have a larger surface area relative to their volume, which helps better diffusion of substances in and out of the cell.

For understanding surface area to volume ratio, imagine a cube with sides of 2 mm.

  • Total surface area = 2 × 2 × 6 = 24 mm²
  • If you cut this cube into eight smaller cubes by halving each side to 1 mm:
    • Surface area of each small cube = 1 × 1 × 6 = 6 mm²
    • Total surface area of all 8 cubes = 6 × 8 = 48 mm², which is double the original.

The total volume remains the same but the total surface area increases, allowing more efficient exchange of materials.


Small size of cell presents a larger surface area / volume ratio

A large surface area relative to volume means:

  • More nutrients can diffuse into the cell,
  • More metabolic wastes can diffuse out,
  • Respiratory gases (oxygen in, carbon dioxide out) can move more efficiently,
  • Damage to the cell can be repaired easily.

Organism का size जितना बड़ा होगा, उसके body में cells की संख्या भी उतनी ज्यादा होगी।

  • Single-celled organisms: कुछ छोटे plants और animals सिर्फ एक ही cell से बने होते हैं। जैसे bacteria, yeast, amoeba।
  • Few-celled organisms: कुछ छोटे plants और animals में थोड़ी संख्या में cells होती हैं, जैसे Spirogyra, Volvox।
  • Multi-celled organisms: ज्यादातर plants और animals, जैसे humans और mango के पेड़, लाखों करोड़ों cells से बने होते हैं।

एक average size adult human body में लगभग:

  • 1,000 million million यानी trillion cells होती हैं,
  • दिमाग़ की cortex में 10,000 million nerve cells होते हैं,
  • और blood में 5-6 million red blood cells और 7 हजार white blood cells हर cubic millimeter में होते हैं।

Cells बहुत छोटी होती हैं, इन्हें बिना microscope के नहीं देखा जा सकता।

  • सबसे छोटी cells bacteria की होती हैं (0.3 से 5 micrometer तक),
  • human red blood cells लगभग 7 micrometer की होती हैं,
  • longest cells nerve cells होती हैं जो finger tips से spinal cord तक extend कर सकती हैं,
  • सबसे बड़ी cells bird के eggs होते हैं, जैसे ostrich का अंडा, जो सबसे बड़ा single cell है।

Smallness of Cells: ज्यादा efficient होने का कारण

Cells आम तौर पर छोटे ही रहते हैं क्योंकि:

  1. Cell के अलग-अलग parts को जल्दी communicate करना पड़ता है ताकि वह अच्छा काम कर सके।
  2. छोटे cells का surface area उनके volume की तुलना में ज्यादा होता है, जिससे materials का exchange (diffusion) जल्दी और बेहतर होता है।

मानिए एक cube है जिसके हर side 2 mm है:

  • इसका surface area = 2 × 2 × 6 = 24 mm²
  • अगर इसे 8 छोटे cubes में काटा जाये, हर side 1 mm का:
    • हर छोटे cube का surface area = 1 × 1 × 6 = 6 mm²
    • आठों cubes का total surface area = 6 × 8 = 48 mm² (जो कि original से double है)

लेकिन total volume दोनों cases में same रहता है। इसका मतलब है कि छोटी cells ज्यादा surface area provide करती हैं, जिससे substances का efficient exchange होता है।


Cell का छोटा size surface area/volume ratio ज्यादा दिखाता है

इसका फायदा यह होता है कि:

  • ज्यादा nutrients cell के अंदर आ पाते हैं,
  • metabolic wastes जल्दी बाहर निकल पाती हैं,
  • oxygen अंदर आता और carbon dioxide बाहर जाता है अच्छी तरह,
  • और cell damage होने पर उसे repair भी जल्दी किया जा सकता है।


6. CELL SHAPES – TO SUIT FUNCTIONAL REQUIREMENT


Cells come in many different shapes, and their shape is often related to the function they perform in the body. Here are some examples:
Epithelial cells: These are flat and have a protective role (like those on our skin).
Human red blood cells: They are circular and biconcave, which allows them to pass easily through narrow capillaries and helps in oxygen transport.
White blood cells: These have an amoeboid shape (like amoeba), and can change shape to squeeze out through capillary walls.
Nerve cells: These are long and thin, which helps them carry signals (“impulses”) from different body parts to the brain and vice versa.
Muscle cells: Long and contractile; they help in movement and pulling actions.
Guard cells (in plants): Bean-shaped cells found near stomatal pores on leaves, which help control opening and closing of pores for gas exchange.
Cells take shapes that are best suited for the job they do.

PROGRESS CHECK (With Answers)
Name the following:
(i) Any two one-celled organisms:
Amoeba, yeast
(ii) The longest cells in animals:
Nerve cells
(iii) Amoeboid cells in humans:
White blood cells (WBCs)
(iv) Outermost layer in plant cells:
Cell wall
(v) A cell component which is visible only in cell division stages:
Chromosomes
List three categories of substances which ensure greater diffusion due to large surface/volume ratio of the cells:
Nutrients
Wastes
Respiratory gases (oxygen and carbon dioxide)


किसी भी cell का shape उसका काम बताता है। अलग-अलग cells अलग shapes में मिलती हैं, और उनका काम भी उसी हिसाब से होता है। उदाहरण के लिए:
Epithelial cells: ये flat और protective होती हैं, जैसे हमारी skin पर।
Human red blood cells: इनका shape circular और biconcave होता है जिससे ये narrow capillaries में आसानी से जा सकती हैं और oxygen transport करती हैं।
White blood cells: इनका shape amoeboid (यानि amoeba जैसा) होता है, जिससे ये shape बदलकर capillary walls से बाहर निकल सकती हैं।
Nerve cells: लंबी और पतली होती हैं, जिससे ये signal (impulse) body parts से brain तक या brain से body parts तक ले जा सकती हैं।
Muscle cells: लंबी और contractile होती हैं, जिससे movement और pulling होता है।
Guard cells (plants में): ये bean-shaped होती हैं और leaf के stomatal pores को खोलने और बंद करने का काम करती हैं। इससे gas exchange control होता है।
Cells का shape उनके काम के हिसाब से best designed होता है।

PROGRESS CHECK (Answers Hindi-English Mix)
इनका नाम बताएं:
(i) कोई भी दो single-celled organisms:
Amoeba, yeast
(ii) Animals में सबसे लंबी cells:
Nerve cells
(iii) Human body में amoeboid cells:
White blood cells (WBCs)
(iv) Plant cell की outermost layer:
Cell wall
(v) ऐसा cell component जो सिर्फ cell division के time दिखता है:
Chromosomes
Cell के surface/volume ratio ज्यादा होने पर किन तीन categories के substances का diffusion better होता है?
Nutrients
Wastes
Respiratory gases (oxygen, carbon dioxide)



7. STRUCTURE OF A CELL


A cell has a general structure that is common in both plant and animal cells. Most cells have three main parts:
Cell Membrane (Plasma Membrane)
It is the outer boundary of the cell which controls what enters and exits the cell.
Cytoplasm
This is the jelly-like substance inside the cell where most chemical reactions happen. It contains various cell organelles (little organs) that do specific jobs.
Nucleus
The control center of the cell. It contains genetic material (DNA) and regulates cell activities.

PARTS OF A CELL (Blue Table Explanation)
Living Parts:
Cell Membrane: Thin, flexible, living boundary that controls what goes in and out (selectively permeable).
Endoplasmic Reticulum: Network of membranes that transports materials, can be rough (with ribosomes) or smooth.
Mitochondria: “Powerhouse” – makes energy by respiration.
Golgi Apparatus: Packs and ships proteins, helps in secretion.
Ribosomes: Protein synthesis happens here.
Lysosomes: Digestion and waste removal (“suicide bags”).
Centrosome: Only in animal cells, helps in cell division.
Plastids: Only in plant cells, stores food or pigments (includes chloroplast for photosynthesis).
Non-living Parts:
Cell Wall: Only in plant cells, made of cellulose. Gives support and protection.
Granules: Stores food, pigments, or waste.
Vacuoles: Storage places inside the cell, big in plant cells.
In the Cytoplasm:
Endoplasmic Reticulum
Mitochondria
Golgi Apparatus
Ribosomes
Lysosomes
Centrosome (animal cell only)
Plastids (plant cell only)
Granules
Vacuoles
In the Nucleus:
Nuclear Membrane: Boundary around nucleus.
Nucleoli: Makes ribosomes.
Chromatin Fibers: DNA threads inside nucleus.
Nucleoplasm: Fluid inside nucleus.


7.1 CELL MEMBRANE and CELL WALL

Cell Membrane (Plasma Membrane)

  • The cell membrane is the thin, flexible outer covering of every cell.
  • It has tiny pores that allow certain substances to enter and leave the cell.
  • The cell membrane is selectively permeable, which means it lets only selected materials pass through.
  • In plant cells, the membrane is just inside the cell wall.

Cell Wall (Only in Plant Cells)

  • The cell wall is an extra, rigid, non-living layer outside the cell membrane.
  • It is mainly made of cellulose.
  • The cell wall gives the plant cell shape, protection and a certain amount of rigidity.
  • Unlike the membrane, the cell wall is freely permeable, allowing substances in solution to easily enter or leave.
  • The cell wall’s main job is structure and protection, not controlling what goes in or out.

7.2 CYTOPLASM

Cytoplasm
Cytoplasm is a semi-liquid, jelly-like substance inside the cell membrane.
It is colorless, transparent, and watery under a microscope.
Most chemical reactions of the cell happen in the cytoplasm.
Sub-parts/Organelles in Cytoplasm:
Endoplasmic Reticulum (ER):
A network of double membranes found throughout the cytoplasm.
Connects outer cell membrane to nuclear membrane.
ER can be rough (with attached ribosomes) or smooth (without ribosomes).
Helps transport materials and forms the supporting framework for the cell.
Ribosomes:
Tiny granules found freely in cytoplasm or attached to ER.
Known as the “protein factories” where proteins are made.
Mitochondria:
Double-walled, sausage-shaped organelles.
Known as the “powerhouse” of the cell.
Site of cellular respiration and energy (ATP) production.
Golgi Apparatus:
Packs and distributes proteins and other materials.
Mostly found near the nucleus.
Lysosomes:
Small vesicles with digestive enzymes.
Help digest food, destroy foreign substances, and remove damaged cell parts.
Centrosome (only in animal cells):
Helps in cell division.
Plastids (only in plant cells):
Stores food and pigments, includes chloroplasts for photosynthesis.
(a) Leucoplasts
These are colorless plastids without any pigment.
Their primary function is to store food materials like starch.
For example, cells in potato tubers have numerous leucoplasts to store starch.
(b) Chromoplasts
These plastids have color pigments other than green.
They are responsible for giving colors like yellow, orange, and red to flowers and fruits.
The pigments found in chromoplasts include xanthophyll (yellow) and carotene (orange-red).
Chromoplasts help in attracting insects for pollination by coloring petals and fruits.
(c) Chloroplasts
These are green plastids containing the green pigment chlorophyll.
Chloroplasts are responsible for photosynthesis – the process by which plants make their own food using sunlight, carbon dioxide, and water.
Chloroplasts also contain other pigments like carotenoids but the green chlorophyll masks these colors.
They have their own DNA and can divide independently within the cell.
Non-living inclusions in cytoplasm:
Granules (food, pigment, waste)
Vacuoles (storage spaces, especially large in plant cells)


7.3 NUCLEUS

Nucleus is the most important part of a cell. It acts as the “control center” of the cell and has several key functions:

  • Regulates and Coordinates Activities: The nucleus controls all the activities inside the cell, like growth, metabolism, and reproduction.
  • Cell Division: It plays a major role in cell division (mitosis and meiosis), making sure genetic material is properly passed to new cells.
  • Contains Genetic Material: Inside the nucleus are chromatin fibers, which are made of DNA. DNA contains genes that carry hereditary information from parents to offspring.

Structure of the Nucleus:

  • Nuclear Membrane: A thin double-layered covering around the nucleus, with tiny pores that allow substances to enter and leave.
  • Nucleoplasm: The jelly-like substance inside the nucleus.
  • Nucleolus: A small, round body (sometimes more than one) inside the nucleus. It helps with the production of ribosomes, which make proteins.
  • Chromatin Fibres: Thin threads seen in the resting nucleus. During cell division, these fibers condense and become chromosomes.

Types of Cells:

  • Prokaryotic cells: Do not have a proper nuclear membrane. Their genetic material is free in the cytoplasm (example: bacteria).
  • Eukaryotic cells: Have a well-defined nuclear membrane (example: plant and animal cells).

Additional Points:

  • The number of chromosomes is fixed for each species (humans have 46 chromosomes).
  • Genes are specific segments of DNA and are responsible for inherited characters.

Cell की structure almost सभी plant और animal cells में similar होती है। इसमें मुख्य तौर पर ये तीन parts होते हैं:
Cell Membrane (Plasma Membrane)
Cell की outer boundary होती है, जो decide करती है क्या अंदर जाए और क्या बाहर आए (selectively permeable)।
Cytoplasm
यह cell के अंदर jelly जैसा substance होता है जिसमें अलग-अलग organelles होती हैं और chemical reactions होती हैं।
Nucleus
ये cell का control center होता है, इसमें genetic material (DNA) रहता है और cell के सारे activities regulate होते हैं।

PARTS OF A CELL (Blue Table – Hindi-English Mix)
Living Parts:
Cell Membrane: पतली, flexible boundary जो अंदर-बाहर substances को control करती है।
Endoplasmic Reticulum: एक network जो cell के अंदर materials को transport करता है, rough (ribosomes के साथ) या smooth हो सकता है।
Mitochondria: Powerhouse है, respiration से energy देता है।
Golgi Apparatus: Proteins को pack और ship करता है, secretion में help करता है।
Ribosomes: यहां protein synthesis होती है।
Lysosomes: Cell के waste को digest करता है, “suicide bag” भी कहते हैं।
Centrosome: सिर्फ animal cells में होता है, cell division में काम करता है।
Plastids: सिर्फ plant cells में होते हैं, food या pigments store करते हैं (chloroplast photosynthesis करता है)।
Non-living Parts:
Cell Wall: सिर्फ plant cells में होती है, cellulose से बनी होती है, support और protection देती है।
Granules: Food, pigments या waste को store करता है।
Vacuoles: Storage space होता है, plant cells में बड़े होते हैं।
Cytoplasm में पाए जाने वाले:
Endoplasmic Reticulum
Mitochondria
Golgi Apparatus
Ribosomes
Lysosomes
Centrosome (सिर्फ animal cell में)
Plastids (सिर्फ plant cell में)
Granules
Vacuoles
Nucleus में पाए जाने वाले:
Nuclear Membrane (nucleus का boundary)
Nucleoli (ribosomes बनाता है)
Chromatin Fibers (DNA के threads)
Nucleoplasm (nucleus के अंदर का fluid)


7.1 सेल मेम्ब्रेन और सेल वॉल

Cell Membrane (Plasma Membrane)

  • Cell membrane हर cell की बाहर की पतली, flexible layer होती है।
  • इसमें छोटे pores होते हैं, जिससे selected substances अंदर जा सकते हैं या बाहर आ सकते हैं।
  • Cell membrane selectively permeable होती है, यानि सिर्फ कुछ चीजों को ही अंदर-बाहर जाने देती है।
  • Plant cells में membrane cell wall के just अंदर होती है।

Cell Wall (सिर्फ Plant Cells में)

  • Cell wall एक extra, rigid, non-living layer है, जो cell membrane के बाहर होती है।
  • Cellulose से बनी होती है।
  • Cell wall plant cell को proper shape, protection और rigidity देती है।
  • Cell wall freely permeable होती है मतलब कि जितने भी substances solution में होते हैं, वो अंदर-बाहर आसानी से जा सकते हैं।
  • Cell wall mainly structure और protection के लिए होती है, membrane की तरह filtering का काम नहीं करती।

7.2 साइटोप्लाज्म (Cytoplasm)

Cytoplasm
Cytoplasm cell membrane के अंदर का semi-liquid, jelly जैसा substance होता है।
Microscope में देखने पर ये colorless, transparent और watery दिखता है।
Cell के ज्यादातर chemical reactions cytoplasm में होते हैं।
Cytoplasm में क्या-क्या होता है (Organelles and Inclusions):
Endoplasmic Reticulum (ER):
Cytoplasm में फैला हुआ double membrane का network।
बाहर cell membrane और अंदर nucleus से जुड़ा रहता है।
Rough ER में ribosomes लगे होते हैं, Smooth ER में नहीं।
Cell में materials को transport करने, और supporting framework बनाने में help करता है।
Ribosomes:
बहुत छोटे granules हैं, cytoplasm में free या ER पर attached रहते हैं।
इन्हें “protein factories” कहा जाता है क्योंकि proteins यहीं बनते हैं।
Mitochondria:
Double-walled, sausage-shaped bodies।
“Powerhouse” है cell का।
Respiration और energy (ATP) यहीं बनती है।
Golgi Apparatus:
Proteins और दूसरी चीजों को pack और distribute करता है।
Usually nucleus के पास होता है।
Lysosomes:
छोटे vesicles जिनमें digestive enzymes होते हैं।
Food digest करते हैं, foreign substances और damaged cell parts को destroy करते हैं।
Centrosome (सिर्फ animal cells में):
Cell division में important role play करता है।
Plastids (सिर्फ plant cells में):
Pigments और food store करते हैं, chloroplasts photosynthesis करते हैं।
(a) Leucoplasts
ये colorless plastids होते हैं, जिनमें कोई pigment नहीं होता।
इनका मुख्य काम food materials जैसे starch को store करना होता है।
उदाहरण के तौर पर, potato के cells में बहुत सारे leucoplasts होते हैं जो starch जमा करते हैं।
(b) Chromoplasts
ये plastids color pigments रखते हैं जो green नहीं होते।
ये फूलों और फलों को पीला, नारंगी और लाल रंग देने के लिए जिम्मेदार होते हैं।
Chromoplasts में pigments जैसे xanthophyll (yellow) और carotene (orange-red) पाए जाते हैं।
Chromoplasts की वजह से flowers और fruits रंगदार होते हैं जो insects को attract करते हैं।
(c) Chloroplasts
ये हरे plastids होते हैं जिनमें हरा pigment chlorophyll होता है।
Chloroplasts का काम होता है photosynthesis – plants का अपने लिए खाना बनाना जो sunlight, carbon dioxide, और पानी का उपयोग करके होता है।
Chloroplasts में carotenoids जैसे अन्य pigments भी होते हैं, लेकिन हरा chlorophyll उनकी रंगत छुपाता है।
इनमें खुद का DNA होता है और ये अपने आप cell में divide भी कर सकते हैं।
Cytoplasm में non-living inclusions भी होते हैं:
Granules (food, pigment, waste)
Vacuoles (storage spaces, plant cells में बड़े होते हैं)


7.3 न्यूक्लियस

Nucleus किसी भी cell का सबसे important पार्ट है। इसे cell का “control center” भी कहते हैं और ये कई जरूरी काम करता है:

  • Activities Regulate और Coordinate करता है: Nucleus cell के अंदर होने वाली सारी activities जैसे growth, metabolism, reproduction को control करता है।
  • Cell Division: Nucleus cell division (mitosis और meiosis) करवाने में main role play करता है ताकि genetic material सही तरीके से नई cells में पहुंचे।
  • Genetic Material Store करता है: Nucleus के अंदर chromatin fibers होते हैं, जो DNA से बने होते हैं। इसी DNA में genes होते हैं, जो heredity यानी parents से बच्चों में आने वाली qualities को carry करते हैं।

Nucleus की Structure:

  • Nuclear Membrane: Nucleus को चारों तरफ से एक thin double-layered membrane घेरती है, जिसमें छोटे-छोटे pores होते हैं ताकि substances nucleus में आ-जा सकें।
  • Nucleoplasm: Nucleus का अंदर का jelly जैसा हिस्सा, जिसमें बाकी सब चीजें रहती हैं।
  • Nucleolus: Nucleus के अंदर एक (या कभी-कभी एक से ज्यादा) गोल structure होता है, जो ribosome बनाता है (protein synthesis में help करता है)।
  • Chromatin Fibers: Nucleus के अंदर thin threads जैसे दिखते हैं। Cell division के time ये condense होकर chromosome बन जाते हैं।

Cells के Types:

  • Prokaryotic cells: इनमें nuclear membrane proper नहीं होती, genetic material cytoplasm में free रहता है (जैसे bacteria)।
  • Eukaryotic cells: इनमें nuclear membrane proper होती है (जैसे plant और animal cells)।

Extra Points:

  • हर species में chromosomes की संख्या fix होती है (human में 46 यानी 23 pairs)।
  • Genes small DNA segments होते हैं, जो inherited characters के लिए responsible होते हैं।

Chromosome Numbers of Some Common Animals and Plants

Every species has a fixed number of chromosomes in its cells, which is a characteristic feature of that species. Chromosomes are structures inside the nucleus made of DNA and proteins, containing genetic information.हर species के cells में chromosomes की संख्या fix होती है। Chromosomes nucleus में होते हैं, ये DNA और protein से बने होते हैं, और genetic information रखते हैं।


Here are some examples of chromosome numbers in different plants and animals:

कुछ plants और animals में chromosome numbers:

OrganismNumber of Chromosomes
Human46
Ascaris (Roundworm)2
Garden Pea14
Onion16
Maize20
Honey-bee32
Lion38
Mouse40
Wheat42
Potato48
Chimpanzee48
Monkey54
Chicken78
Dog78
Sugarcane80
Crayfish200
Some insectsMore than 1000
  • Note: The number of chromosomes can be very different even between closely related species.
  • ध्यान दें: Chromosome की संख्या species-species में अलग हो सकती है, बहुत high या low भी हो सकती है।

Genes, not the number of chromosomes, determine the characteristics (traits) of an organism. For example, a lion, tiger, and house cat all have 38 chromosomes, but they look different because of their different genes.

Genes ही actual में किसी organism के traits तय करते हैं, सिर्फ chromosome की संख्या नहीं। जैसे lion, tiger और house-cat के chromosomes एक जैसे (38) हैं पर genes अलग-अलग होने की वजह से ये अलग दिखते हैं।



DNA – Fingerprinting

DNA fingerprinting is a scientific technique used to identify people based on their unique DNA patterns.

  • Each person has a unique DNA sequence (except identical twins).
  • In this process, scientists analyze specific regions of DNA that vary greatly among individuals.
  • DNA fingerprinting can be used for:
    • Identifying people in criminal cases
    • Determining parentage (who is the real parent)
    • Solving cases with unidentifiable bodies
  • Example: In a famous case in Delhi in 1995, DNA from a charred body was matched with the parents’ DNA to confirm the victim’s identity.

Just like fingerprints, everyone’s DNA pattern is unique, which is why this method is called “DNA fingerprinting.”


DNA fingerprinting एक scientific तकनीक है जिससे किसी भी person की पहचान उसके DNA pattern से की जाती है।

  • हर इंसान का DNA pattern unique होता है (सिवाय identical twins के)।
  • इस technique में scientist DNA के कुछ ऐसे हिस्सों को चेक करते हैं जो हर इंसान में differently arranged होते हैं।
  • DNA fingerprinting किन चीजों में useful है:
    • Crime केस में व्यक्ति की पहचान
    • Parentage check करना (किसके बच्चे हैं)
    • मृत व्यक्ति की पहचान जहाँ body पहचान में नहीं रही हो
  • Example: 1995 में Delhi में एक murder case में जल चुकी body का DNA parents से match कर के identity confirm की गई थी।

जैसे हर इंसान की उंगलियों के निशान अलग होते हैं, वैसे ही DNA pattern भी unique होता है इसलिए इसे “DNA fingerprinting” कहते हैं।



8. THE PLANT AND ANIMAL CELLS


Both plant and animal cells share a basic structure—cell membrane, cytoplasm, nucleus, endoplasmic reticulum, Golgi bodies, mitochondria, and ribosomes. However, there are key differences that help to easily distinguish between these two types of cells. These differences are important to understand, especially in topics like cell wall, centrosome, vacuoles, and plastids.


Differences Between Plant and Animal Cells (English)

FeaturePlant CellsAnimal Cells
Cell WallPresent, made of celluloseAbsent
CentrosomeAbsentPresent
VacuolesOne or few, large and permanentSmall, many, temporary, mainly for secretion/excretion
PlastidsPresent (chloroplasts, chromoplasts, leucoplasts)Absent
SizeUsually larger, more well-defined outlineUsually smaller, boundaries less distinct
CytoplasmUsually not very denseDense and granular
Cytoplasm arrangementThin lining at periphery, vacuole occupies most spaceFills most of the cell

Explanation:

  • Plant cells have a rigid cell wall made of cellulose; animal cells do not have a cell wall.
  • Large vacuoles are prominent in plant cells, storing water and other substances, while animal cells have small, temporary vacuoles.
  • Centrosome is found only in animal cells; it helps in cell division.
  • Plant cells always contain plastids (like chloroplasts for photosynthesis), whereas animal cells completely lack plastids.
  • The cytoplasm in plant cells forms a thin lining against the wall due to a large central vacuole, while in animal cells, cytoplasm fills almost the entire cell and is denser.

अगर कहीं confusion है तो हमेशा ये chart देखकर plant और animal cell को पहचान सकते हैं!

फीचरप्लांट सेलएनिमल सेल
Cell WallCell wall होती है, cellulose से बनी होती हैCell wall नहीं होती
CentrosomeCentrosome नहीं मिलता हैCentrosome होता है
VacuoleVacuole बड़ी और permanent रहती है (एक या ज्यादा)Vacuole छोटी, temporary और secretion/excretion के लिए होती है
PlastidsPlastids होते हैं – जैसे chloroplasts, chromoplastsPlastids नहीं होते
SizeUsually size बड़ा और outline साफ होती हैUsually छोटा और border less clear होती है
CytoplasmCytoplasm dense नहीं होता, vacuole ज़्यादा जगह लेती हैCytoplasm dense और granules वाली होती है
Cytoplasm का arrangementCytoplasm cell wall के किनारे thin lining बनाता हैCell का almost सारा part cytoplasm से भरा होता है

Explanations ( समझना ) :

  • Plant Cell में कड़ा cell wall होती है, जो cellulose से बनी होती है; animal cell में cell wall नहीं होती।
  • Plant cell में बड़ी vacuole होती है जिसमें पानी और दूसरी चीजें store रहती है, जबकि animal cell में vacuole छोटी होती है और ज़्यादातर temporary या secretion/excretion के लिए होती है।
  • Centrosome सिर्फ animal cell में मिलता है, cell division में काम आता है।
  • Plant Cell में plastids जैसे chloroplasts दिखेंगे, जिससे photosynthesis होता है, animal cell में ऐसा कुछ नहीं मिलेगा।
  • Plant cell में cytoplasm दिया हुआ vacuole के किनारे thin layer सा ही रहता है, जबकि animal cell में cytoplasm पूरा cell में फैला रहता है।
  • Plant cell का आकार अक्सर animal cell से बड़ा और साफ दिखता है।


9. Protoplasm


Protoplasm is the living substance inside a cell. It is often called the “living material” because it carries out all the vital processes of life in the cell. It consists mainly of water, proteins, lipids, carbohydrates, mineral salts, and various chemicals.

Protoplasm is very complex and varies slightly from cell to cell, but the basic elements such as carbon, hydrogen, oxygen, nitrogen, sulphur, phosphorus, and iron are common to all living cells.

Scientists have not been able to analyze protoplasm exactly because once it is removed from the living cell, it loses its properties and does not behave like living matter.

Protoplasm mainly consists of two parts:

  • Nucleus – the control center of the cell.
  • Cytoplasm – the jelly-like substance surrounding the nucleus where most cellular activities occur.

In summary, the cell is formed by living protoplasm enclosed in a cell membrane (plus an outer cell wall in plants).


Protoplasm एक living substance होता है जो cell के अंदर पाया जाता है। इसे “living material” भी कहा जाता है क्योंकि यही cell के अंदर सारे जरूरी life processes करता है।

Protoplasm मुख्य रूप से water, proteins, lipids, carbohydrates, mineral salts और कई chemicals से मिला होता है।

Protoplasm बहुत complex होता है और cell से cell थोड़ा अलग हो सकता है, लेकिन उसके basic elements जैसे carbon, hydrogen, oxygen, nitrogen, sulphur, phosphorus और iron सभी cells में common होते हैं।

वैज्ञानिक protoplasm की exact analysis नहीं कर पाए हैं क्योंकि जब इसे living cell से बाहर निकाल दिया जाता है, तो वह living matter जैसा behavior नहीं करता।

Protoplasm के दो मुख्य भाग होते हैं:

  • Nucleus – cell का control center।
  • Cytoplasm – jelly जैसी substance जो नाभिक के आस-पास होता है और जहाँ cell के ज्यादा activities होती हैं।

इसीलिए कहा जाता है कि cell living protoplasm का बना होता है जो cell membrane में enclosed होता है (plants में इसमें extra outer wall भी होता है)।



10. PROKARYOTIC AND EUKARYOTIC CELLS


Cells are broadly classified into two types based on the presence or absence of a well-defined nucleus:

Prokaryotic Cells

  • These cells do not have a well-defined nucleus or nuclear membrane.
  • Genetic material (DNA) floats freely in the cytoplasm in an unorganized form called chromatin.
  • They have smaller ribosomes and lack membrane-bound organelles like mitochondria and chloroplasts.
  • Prokaryotes are considered the most primitive and earliest forms of life (examples: bacteria, blue-green algae).

Eukaryotic Cells

  • These cells possess a distinct nucleus enclosed by a nuclear membrane.
  • Their DNA is organized into multiple chromosomes within the nucleus.
  • They have larger ribosomes and many membrane-bound organelles such as mitochondria, endoplasmic reticulum, chloroplasts (in plants).
  • Eukaryotic cells make up all plants, animals, fungi, and protists—more complex, advanced organisms.

Table 2.3: Differences Between Prokaryotic and Eukaryotic Cells

FeatureProkaryotic CellEukaryotic Cell
Nuclear MembraneAbsentPresent
DNASingle circular DNA floating in cytoplasmMultiple linear chromosomes inside nucleus
RibosomesSmaller (70S)Larger (80S)
Membrane-bound OrganellesAbsent (no mitochondria, chloroplasts, etc.)Present (mitochondria, ER, chloroplasts, etc.)
ExamplesBacteria, Blue-green algaePlants, Animals, Fungi

PROGRESS CHECK with Answers

  1. Name the part of a cell in which:
    (i) Many chemical reactions occur with enzymes?
    Answer: Cytoplasm
    (ii) A network of chromatin fibres occurs?
    Answer: Nucleus
    (iii) Cellulose forms the main component?
    Answer: Cell wall
  2. Differentiate between:
    (i) An organ and an organelle?
    Answer: An organ is a tissue group in an organism performing a specific function, while an organelle is a tiny structure inside a cell performing a specific job.
  3. (ii) A plant cell and an animal cell pertaining to presence of plastids?
    Answer: Plant cells contain plastids (like chloroplasts) but animal cells do not.
  1. Name the cell organelles concerned with:
    (i) Secretion of enzymes?
    Answer: Golgi apparatus
    (ii) Trapping solar energy?
    Answer: Chloroplasts
    (iii) Synthesis of proteins?
    Answer: Ribosomes
    (iv) Intracellular digestion?
    Answer: Lysosomes
    (v) Production of ATP?
    Answer: Mitochondria
  2. Name the cell part which is:
    (i) Composed of cellulose?
    Answer: Cell wall
    (ii) Formed of irregular network of tubular double membranes?
    Answer: Endoplasmic reticulum
    (iii) A clear space with water or other substances in solution?
    Answer: Vacuole
  3. True or False? If false, correct it:
    (i) Prokaryotic cells have larger ribosomes.
    Answer: False, prokaryotic cells have smaller ribosomes.
    (ii) Eukaryotic cells have mitochondria.
    Answer: True
    (iii) Amoeba is an example of prokaryotes.
    Answer: False, Amoeba is a eukaryote.
    (iv) Bacteria have no nuclear membrane but possess chloroplasts.
    Answer: False, bacteria have no nuclear membrane and no chloroplasts.

Cells को दो types में बांटा जाता है जो nucleus के presence पर depend करता है:

प्रोकैरियोटिक सेल्स

  • इनमें well-defined nucleus या nuclear membrane नहीं होता।
  • Genetic material (DNA) cytoplasm में freely रहता है और इसे chromatin कहते हैं।
  • Ribosomes छोटे होते हैं और mitochondria या chloroplast जैसे membrane-bound organelles नहीं होते।
  • ये primitive और सबसे पुराने प्रकार के life forms हैं (जैसे bacteria और blue-green algae)।

युकैरियोटिक सेल्स

  • इनमें एक distinct nucleus होता है जो nuclear membrane से घिरा होता है।
  • DNA nucleus में organized chromosomes के रूप में होता है।
  • Ribosomes बड़े होते हैं और mitochondria, endoplasmic reticulum, chloroplast जैसे कई organelles होते हैं।
  • Plants, animals, fungi और protists जैसे complex organisme युकैरियोटिक हैं।

टेबल 2.3 – प्रोकैरियोटिक और युकैरियोटिक सेल्स के बीच अंतर

फीचरप्रोकैरियोटिक सेल्सयुकैरियोटिक सेल्स
Nuclear Membraneनहीं होताहोता है
DNACircular, cytoplasm में freeLinear chromosomes, nucleus के अंदर
Ribosomesछोटे (70S)बड़े (80S)
Membrane-bound Organellesनहीं होताmitochondria, chloroplasts, ER होते हैं
उदाहरणbacteria, blue-green algaeplants, animals, fungi

प्रोग्रेस चेक के उत्तर

(i) Enzymes की मदद से कई chemical reactions कहाँ होती हैं?
उत्तर: Cytoplasm
(ii) Chromatin fibers किसमें होते हैं?
उत्तर: Nucleus
(iii) Cellulose मुख्य रूप से कहाँ पाया जाता है?
उत्तर: Cell wall

(i) Organ और organelle में अंतर बताएं?
उत्तर: Organ शरीर का tissue group होता है, organelle cell के अंदर एक छोटी structure जो अपना काम करती है।
(ii) Plant cell और animal cell में plastids को लेकर अंतर?
उत्तर: Plant cells में plastids होते हैं, animal cells में नहीं।

(i) Enzymes के secretion से जुड़ा organelle?
उत्तर: Golgi apparatus
(ii) Solar energy को trap करने वाला organelle?
उत्तर: Chloroplasts
(iii) Protein synthesis होता है?
उत्तर: Ribosomes
(iv) Intracellular digestion होता है?
उत्तर: Lysosomes
(v) ATP का production कहाँ होता है?
उत्तर: Mitochondria

(i) Cellulose किस cell part में होता है?
उत्तर: Cell wall
(ii) Irregular network of tubular double membranes?
उत्तर: Endoplasmic reticulum
(iii) Water या dissolved substances वाला clear space?
उत्तर: Vacuole

(i) Prokaryotic cells के ribosomes बड़े होते हैं।
गलत, प्रोकैरियोटिक सेल्स में छोटे ribosomes होते हैं।
(ii) Eukaryotic cells में mitochondria होते हैं।
सही
(iii) Amoeba प्रोकैरियोटिक सेल है।
गलत, Amoeba युकैरियोटिक सेल है।
(iv) Bacteria में nuclear membrane नहीं होती पर chloroplast होते हैं।
गलत, bacteria में neither nuclear membrane होती है न chloroplast।



11. EVERY ACTIVITY OF A LIVING ORGANISM IS THE OUTCOME OF CELLULAR ACTIVITY


All the activities that living organisms perform—such as growth, repair, movement, nutrition, respiration, protection from diseases, sensation, reproduction, and more—are the result of activities happening inside their cells. Here’s how various essential life activities are carried out at the cellular level:

  1. Growth: Increase in body size and substance is due to the increase in the number and size of cells.
  2. Repair and Regeneration: Repair of injuries or regrowth of lost parts (like lizard’s tail) happens because of cell division.
  3. Movement: Movements (walking, running, swimming, etc.) are possible because muscle cells contract and move bones; even blood flow and food movement in the gut are due to cell activity.
  4. Nutrition: Different steps in feeding like tasting, chewing, swallowing, digestion, absorption, and storage (like fat in fat cells and glycogen in liver) are all done by specific cells.
  5. Circulation: Blood and other fluids move in the body due to contractions of muscle cells in the heart and other organs.
  6. Respiration: Blood cells transport respiratory gases (oxygen, carbon dioxide) within the body.
  7. Immunity: White blood cells protect from disease-causing germs by devouring them or producing antibodies and antitoxins.
  8. Sensation & Response: Sensory cells are responsible for seeing, hearing, smelling, tasting, and feeling, as well as giving instructions from the brain to muscles or glands.
  9. Temperature Regulation: Body heat is managed by cell activity—like cooling by sweating from gland cells.
  10. Reproduction: Producing offspring, seeds, or eggs occurs through activities of special cells (egg and sperm cells).
  11. Absorption in Plants: Root cells absorb water/nutrients; stem cells conduct these substances.
  12. Photosynthesis: Leaf cells with chloroplasts perform food production using sunlight.
  13. Attraction: Cell pigments attract insects for pollination, and nectars are also secretions of cells.
  14. Inheritance: Genes in germ cells (egg or sperm) ensure transfer of parental features to next generation.

Summary: Every activity in living organisms is the result of cellular activity, with different cells performing specialized roles.


PROGRESS CHECK with Answers

  1. Match the items:
Column I (Activity)Column II (Cellular activity)
(i) Repair(c) Cell division
(ii) Cooling of body(d) Gland cells give out sweat for evaporation
(iii) Movement(a) Contractility of cells
(iv) Protection from diseases(b) Cells devour germs
  1. Which cell organelle is the key to the life of the cell?
    Answer: Nucleus
  2. How do you say a cell also has life span and death? Give one example.
    Answer: Old and weak cells die and new ones replace them, e.g., skin cells are replaced regularly.
  3. All organisms excrete. Does an individual cell do it? Give one example.
    Answer: Yes, cells remove waste—carbon dioxide is removed by cells during respiration.
  4. Every organism needs food. Does a cell also need it?
    Answer: Yes, to perform vital activities, a cell needs nutrients for energy and growth.

Extra Information

Stem Cells:

  • Stem cells are unspecialized cells that can divide indefinitely and develop into different cell types.
  • Types:
    (a) Embryonic stem cells: Can form any tissue type (pluripotent).
    (b) Tissue-specific stem cells: Become capable of forming only one type of tissue (like blood cells from bone marrow).
    (c) Induced pluripotent stem cells (iPS): Ordinary skin cells can be changed into stem cells using certain chemicals. For example, type 1 diabetes can be corrected by regenerating pancreatic beta cells using iPS technology.

हर living organism जो भी काम करता है—growth, repair, movement, nutrition, respiration, diseases से protection, sensation, reproduction—all ये सब cell के अंदर activities की वजह से possible होते हैं। यहाँ कुछ examples दिए गए हैं:

  1. Growth: Body का size बढ़ना और substances बनना, यह सब cells के number और size बढ़ने की वजह से होता है।
  2. Repair और Regeneration: जब body में चोट लगती है या कोई part (जैसे लिज़र्ड की tail) regenerate होती है, तो यह cell division की वजह से होता है।
  3. Movement: Walk करना, run करना, swim करना, ये सब muscle cells की contraction की वजह से possible है। Blood flow और food gut में move होना भी cell activities की वजह से है।
  4. Nutrition: Taste करना, chew करना, swallow करना, digest करना, absorb करना, और खाना store करना—इन सब steps को अलग-अलग cells करते हैं।
  5. Circulation: Blood और दूसरी fluids body में circulate होती हैं क्योंकि heart और अन्य organs के muscle cells contract करते हैं।
  6. Respiration: Blood cells body में oxygen और carbon dioxide transport करते हैं।
  7. Immunity: White blood cells (WBCs) germs को destroy करते हैं या antibodies/antitoxins बनाते हैं।
  8. Sensation और Response: Sensory cells हमें देखने, सुनने, smelling, tasting, touch वगैरह allow करते हैं। Brain cell से orders muscles या glands तक पहुँचाते हैं।
  9. Temperature Regulation: हमारा body temperature cell activities से control होता है—gland cells sweat देकर body cool करते हैं।
  10. Reproduction: Young ones (eggs, seeds) produce करने का काम special cells (egg और sperm) से होता है।
  11. Plants में Absorption: Root cells पानी और nutrients absorb करते हैं, stem cells इन्हें पूरे plant तक पहुंचाते हैं।
  12. Photosynthesis: Leaf cells जिनमें chloroplasts होते हैं, वे sunlight से food बनाते हैं।
  13. Attraction: Flowers के colors और nectar—cells की वजह से हैं जो insects को attract करते हैं।
  14. Inheritance: Egg और sperm में मौजूद genes parental features को बच्चों तक पहुंचाते हैं।

Summary: Body का हर activity different cells की activity की वजह से होता है, हर cell की अलग-अलग responsibility होती है।


PROGRESS CHECK के Answers

(i) Repair → (c) Cell division
(ii) Cooling of body → (d) Gland cells give out sweat for evaporation
(iii) Movement → (a) Contractility of cells
(iv) Protection from diseases → (b) Cells devour germs

  1. सबसे जरूरी सेल organelle कौन सा है?
    उत्तर: Nucleus
  2. Cell की life span और death कैसे होती है? एक example दें।
    उत्तर: पुरानी और कमजोर cells मर जाती हैं और नई cells उन्हें replace करती हैं, जैसे skin cells।
  3. क्या cell excrete करता है? Example दें।
    उत्तर: हाँ, जैसे respiration के समय cell carbon dioxide बाहर निकालता है।
  4. क्या cell को भी food चाहिए? संक्षेप में explain करें।
    उत्तर: हाँ, cell को energy और growth के लिए food/nutrients चाहिए होते हैं।

Extra Information (Stem Cells)

Stem cells ऐसे cells होते हैं जो अभी किसी particular tissue के लिए fix नहीं हुए हैं—इनमें किसी भी tissue type में बदलने की ability होती है।

  • Embryonic stem cells: ये किसी भी तरह का tissue बना सकते हैं (pluripotent)।
  • Tissue-specific stem cells: कुछ stage के बाद वे सिर्फ एक ही type के tissue बना सकते हैं जैसे bone marrow से सिर्फ blood cells बनते हैं।
  • iPS (induced pluripotent) stem cells: Normal skin cells को special chemical से pluripotent stem cell में बदल सकते हैं। Type 1 diabetes में ये technique pancreas के beta cells regenerate करने के लिए use होती है।


Points to Remember

  • All plants and animals are made up of cells.
  • Every organism starts as a single cell.
  • Cell theory: (1) The cell is the unit of structure, (2) the unit of function, and (3) all cells develop from pre-existing cells.
  • Plant cells have a rigid cell wall of cellulose and large vacuoles.
  • Cell membrane is selectively permeable, cell wall is freely permeable.
  • Ribosomes make proteins, mitochondria produce energy (ATP), Golgi bodies help in secretion, lysosomes destroy foreign materials.
  • Plastids are various types in plants.
  • Nucleus has genes and controls cell activities.
  • Prokaryotic cells have no real nucleus or organelles except ribosomes; they were the first forms of life on earth.

  • सारे plants और animals cells से बने हैं।
  • हर organism एक single cell से शुरू होता है।
  • Cell theory: (1) Cell structure unit है, (2) function unit है, (3) सारी cells pre-existing cells से बनती हैं।
  • Plant cells में rigid cell wall और बड़ी vacuoles होती हैं।
  • Cell membrane selectively permeable है, cell wall freely permeable है।
  • Ribosome protein बनाता है, mitochondria energy (ATP) produce करता है, golgi bodies secretion में help करता है, lysosomes foreign materials destroy करते हैं।
  • Plant cells में अलग-अलग plastids होते हैं।
  • Nucleus में genes होते हैं और वही cell को control करता है।
  • Prokaryotic cells में असली nucleus या organelles नहीं होते, बस ribosome होते हैं—ये earth पर life का पहला form थे।



Review Questions and Answers


A. MULTIPLE CHOICE TYPE

1. Which one of the following cell organelles is correctly matched with its function?
(a) Ribosomes Synthesis of proteins
(b) Mitochondria – Secretion of enzymes
(c) Plasma membrane Freely permeable
(d) Centrosome – Carries genes
Answer: (a) Ribosomes Synthesis of proteins
Reason: Ribosomes are the sites where proteins are made inside the cell.

2. All life starts as
(a) an egg
(b) a single cell
(c) a gene
(d) a chromosome
Answer: (b) a single cell
Reason: Every living being begins life as a single cell, like a fertilized egg.

3. Which one of the following is found both in the cells of a mango plant and a monkey?
(a) chloroplasts
(b) centrioles
(c) cell wall
(d) cell membrane
Answer: (d) cell membrane
Reason: Both plant and animal cells have cell membranes, but not cell walls or chloroplasts.

4. A plant cell can be identified from an animal cell by the:
(a) absence of centrosome.
(b) presence of cell membrane.
(c) presence of vacuoles
(d) none of the above
Answer: (c) presence of vacuoles
Reason: Plant cells have a prominent vacuole, which is not found in animal cells in the same way.

5. Plant cell has a cell wall made of:
(a) Protein
(b) Fructose
(c) Cellulose
(d) Fatty acids
Answer: (c) Cellulose
Reason: Plant cell walls are primarily made of cellulose.

6. The cell organelle that helps in respiration of the cell is:
(a) Mitochondria
(b) Lysosome
(c) Ribosome
(d) Centrosome
Answer: (a) Mitochondria
Reason: Mitochondria are the powerhouses of the cell and release energy during respiration.


B. VERY SHORT ANSWER TYPE

1. Name the part of the cell concerned with the following?
(a) Liberation of energy
Answer: Mitochondria
(b) Synthesis of proteins
Answer: Ribosome
(c) Transmission of hereditary characters from parents to offspring
Answer: Chromosomes
(d) Initiation of cell division
Answer: Centrosome
(e) Hydrolytic in function
Answer: Lysosome
(f) Entry of only certain substances into and out of the cell.
Answer: Plasma membrane (cell membrane)


C. SHORT ANSWER TYPE

1. It is said that the protoplasm cannot be analysed chemically. Why?
Because as soon as protoplasm is removed from the cell, it loses its living nature and properties, so its exact chemical composition cannot be determined outside the cell.

2. What is the difference between an organ and an organelle?
An organ is a part of an organism made of many tissues working together for a function, like the heart or kidney. An organelle is a small structure inside the cell, like the nucleus or mitochondria, which performs a specific function within that cell.

3. Do you think the cells of an elephant would be larger than the cells of a rat? Explain briefly.
No, the size of individual cells in an elephant and a rat is almost the same. The difference in body size is because elephants have many more cells, not because their cells are bigger.

4. Differentiate between the following pairs of terms:
(a) Protoplasm and cytoplasm:
Protoplasm is the living content of a cell, including the nucleus and cytoplasm. Cytoplasm is the jelly-like part outside the nucleus but inside the cell membrane.

(b) Nucleolus and nucleus:
The nucleus is a large, dense organelle containing the cell’s genetic material; the nucleolus is a small body inside the nucleus where ribosomes are made.

(c) Centrosome and chromosome:
The centrosome helps in cell division by forming spindle fibres, while chromosomes carry genetic information and are visible during cell division.

(d) Cell wall and cell membrane:
The cell wall is a rigid outer covering found only in plant cells; the cell membrane is thin, flexible, present in both plant and animal cells, and controls substance entry and exit.

(e) Plant cell and animal cell:
Plant cells have a cell wall, plastids, and large vacuoles. Animal cells lack a cell wall and plastids and have small, temporary vacuoles.

(f) Prokaryotes and eukaryotes:
Prokaryotes have no well-defined nucleus or membrane-bound organelles (example: bacteria). Eukaryotes have a nucleus with a nuclear membrane and many organelles (example: plants, animals).

5. Mention three features found only in plant cells and one found only in animal cells.
Plant cells: cell wall, plastids (like chloroplasts), large central vacuole.
Animal cell: centrosome.

6. Why are the cells generally of a small size?
Cells stay small to allow nutrients and waste to move quickly in and out. A high surface area to volume ratio helps cells function efficiently.


D. LONG ANSWER TYPE

1. What is the cell theory? Who propounded it and when?
Cell theory explains that all living things are made of cells, cells are the basic unit of structure and function, and all cells come from pre-existing cells. Matthias Schleiden and Theodor Schwann proposed it in 1839, and Rudolf Virchow added the third point in 1858.

2. Mention any three differences between a living cell and a brick in a wall.
A living cell is alive, can grow, divide, and respond to stimuli, but a brick is non-living, can’t grow, reproduce, or sense things. Cells are made of protoplasm, have a cell membrane, and can metabolize, while bricks are made of clay, have a hard surface, and don’t perform life activities.

3. Name the plastid and pigment likely to be found in the cells of:
(a) petals of sunflower – Chromoplast, xanthophyll
(b) ripe tomato – Chromoplast, carotene
(c) skin of green mango – Chloroplast, chlorophyll
(d) cells of potato – Leucoplast, no pigment (stores starch)

4. How many chromosome pairs are found in human cells?
23 pairs (total 46 chromosomes).

5. State the major functions of the following:
(a) Plasma membrane – Controls entry and exit of substances in the cell.
(b) Ribosome – Synthesizes proteins.
(c) Lysosome – Carries out intracellular digestion and breaks down old organelles.
(d) Mitochondria – Releases energy by cellular respiration (“powerhouse” of the cell).

6. Match the items in column ‘A’ with those in column ‘B’.
(a) Vacuoles – (iii) Covered by tonoplast
(b) Nucleolus – (v) Forms RNA
(c) Lysosomes – (i) Intracellular digestion
(d) Anthocyanin – (iv) Dissolved in the cytoplasm
(e) Cristae – (ii) Respiratory enzymes

7. Fill in the blanks:
(a) Lysosome consists of membranous sacs and secretes 40 types of digestive enzymes.
(b) Centrosome is surrounded by microtubules, located near the nucleus.
(c) Very thin flexible, living membrane which is differentially permeable, is called cell membrane (plasma membrane).
(d) More than 1000 chromosomes are found in the nucleus of certain insects.
(e) Genes are hereditary units.
(f) Leucoplast is a plastid which stores starch.

8. List any six features found both in plant and animal cells.
Both have: cell membrane, nucleus, cytoplasm, mitochondria, ribosomes, Golgi apparatus.

9. Given below are the sketches of two types of cells A and B
(a) Which one of these is a plant cell? Give reason in support of your answer.
The cell that shows cell wall, chloroplasts, and a large vacuole is the plant cell.

(b) List the cell structures which are common to both the types.
Cell membrane, nucleus, cytoplasm, mitochondria, Golgi bodies, endoplasmic reticulum, ribosomes.

(c) Name the structures found only in plant cells and those found only in animal cells.
Only in plant cells: cell wall, plastids (chloroplasts), large vacuole.
Only in animal cells: centrosome.



Search Results for:

Introduction

Welcome to your ultimate guide to Measurements and Experimentation for ICSE Class 9 Physics! 📏⚡ This chapter unlocks the secrets of accurate measurements, from mastering SI units and vernier calipers to understanding the science behind simple pendulums. Learn how scientists measure everything from atoms to galaxies, and discover practical tools like screw gauges and pendulum clocks. With easy explanations, solved examples, and fun experiments, this guide makes physics simple and engaging. Let’s dive into the world of precision and experimentation!

1. Why Do We Need Units?

Physics is all about measuring things—like length, time, and mass. But to measure anything, we need a standard reference, called a unit.Example: If you say a rope is “10 units” long, is that 10 cm, 10 meters, or 10 feet? Without a standard unit, measurements are meaningless!

2. What Makes a Good Unit?

A unit must be:
Fixed & Reproducible – Always the same (e.g., 1 meter is always 1 meter).
Convenient – Not too big or too small (e.g., using “km” for road distances).
Internationally Accepted – Scientists worldwide agree on it.

3. Types of Units

(a) Fundamental (Basic) Units
These are independent and can’t be broken down further. The SI system has 7 fundamental units:

QuantityUnitSymbol
Lengthmeterm
Masskilogramkg
Timeseconds
TemperaturekelvinK
Electric CurrentampereA
Luminous Intensitycandelacd
Amount of Substancemolemol

(b) Derived Units
Combinations of fundamental units. Examples:

  • Speed = meter/second (m/s)
  • Area = meter × meter (m²)

4. Systems of Measurement

Before SI, people used different systems:

  • CGS System: Centimeter (cm), Gram (g), Second (s).
  • FPS System: Foot (ft), Pound (lb), Second (s).
  • MKS System: Meter (m), Kilogram (kg), Second (s).

Now, everyone uses the SI system because it’s universal and precise!

5. Prefixes for Big & Small Measurements

To handle very large or tiny quantities, we use prefixes:

PrefixSymbolMultiplierExample
Kilok10³ (1000x)1 kg = 1000 grams
Millim10⁻³ (0.001x)1 mm = 0.001 m
Microμ10⁻⁶ (0.000001x)1 μm = 0.000001 m
GigaG10⁹ (1,000,000,000x)1 GHz = 1,000,000,000 Hz

Fun Fact:

  • The meter was first defined as 1/10,000,000 of the distance from the North Pole to the Equator!

Quick Quiz (Answers Below):

  1. What is the SI unit of mass?
  2. Which system uses “foot” and “pound”?
  3. What does the prefix “milli” mean?

Answers:

  1. Kilogram (kg)
  2. FPS System
  3. 0.001x (or one-thousandth)

Key Takeaways

Units are essential for accurate measurements.
SI system is the global standard.
Prefixes help simplify big/small numbers.


Systems of Units & Prefixes – Explanation
1. Systems of Units

Before the SI system, different regions used their own measurement systems. Here are the three main ones:

SystemLength UnitMass UnitTime UnitUsed In
CGS (French)Centimeter (cm)Gram (g)Second (s)Labs, small-scale physics
FPS (British)Foot (ft)Pound (lb)Second (s)USA, UK (old systems)
MKS (Metric)Meter (m)Kilogram (kg)Second (s)Early scientific work

Why SI Won?

  • Consistency: Uses powers of 10 (easy calculations).
  • Global Standard: Accepted worldwide.

Fun Fact:
The kilogram (kg) is the only SI unit still defined by a physical object (a platinum-iridium cylinder in France)!


2. Prefixes with Units

To handle very large or tiny measurements, we use prefixes:

(a) Big Measurements (Kilo, Mega, Giga…)
PrefixSymbolMultiplierExample
decada10¹ (10x)1 dam = 10 meters
hectoh10² (100x)1 hg = 100 grams
kilok10³ (1000x)1 km = 1000 meters
megaM10⁶ (1,000,000x)1 MHz = 1,000,000 Hz
gigaG10⁹ (1,000,000,000x)1 GB = 1,000,000,000 bytes
(b) Small Measurements (Milli, Micro, Nano…)
PrefixSymbolMultiplierExample
decid10⁻¹ (0.1x)1 dm = 0.1 meter
centic10⁻² (0.01x)1 cm = 0.01 meter
millim10⁻³ (0.001x)1 mm = 0.001 meter
microμ10⁻⁶ (0.000001x)1 μm = 0.000001 meter
nanon10⁻⁹ (0.000000001x)1 nm = 0.000000001 meter
Real-World Examples
  • 5 GHz CPU = 5,000,000,000 cycles per second.
  • 2.5 pF capacitor = 0.0000000000025 Farads.

Pro Tip:

  • Never use two prefixes together (e.g., kilo-mega is wrong; use giga instead).

Quick Quiz (Answers Below)
  1. Which system uses feet and pounds?
  2. Convert 4.6 μm to meters.
  3. What does the prefix “nano” mean?

Answers:

  1. FPS system
  2. 0.0000046 m (since micro = 10⁻⁶)
  3. 10⁻⁹ (one-billionth)

Key Takeaways

CGS, FPS, MKS were replaced by the SI system for uniformity.
Prefixes make huge/tiny numbers manageable (e.g., nano, giga).
Avoid double prefixes (e.g., write “5 GW” instead of “5 kMW”).


Units of Length

1. The Meter: Our Fundamental Unit

The meter (m) is the SI unit for measuring length. But did you know its definition has changed over time?

  • 1889 Definition: Distance between two marks on a platinum-iridium bar
  • 1960 Update: Defined using light waves from krypton gas
  • Modern Definition: Distance light travels in 1/299,792,458 seconds!

Fun Fact: The speed of light (299,792,458 m/s) is now used to define the meter!

2. Everyday Units (Smaller Than Meter)

For measuring everyday objects:

UnitRelation to MeterExample Use
Centimeter (cm)1 cm = 0.01 mPencil length
Millimeter (mm)1 mm = 0.001 mPencil thickness
Micrometer (μm)1 μm = 0.000001 mHuman hair width
Nanometer (nm)1 nm = 0.000000001 mDNA strand width

Memory Trick:

  • “Centi” = 1/100 (like 100 cents in 1 dollar)
  • “Milli” = 1/1000 (think “million” has lots of zeros)

3. Big Distance Units

For measuring large distances:

UnitEquivalent in MetersUsed For
Kilometer (km)1,000 mRoad distances
Astronomical Unit (AU)149.6 billion mEarth-Sun distance
Light-Year (ly)9.46 trillion mStar distances
Parsec30.9 trillion mAstronomy

Cool Comparison:

  • 1 Light-Year = 63,241 AU
  • The Moon is only 1.3 light-seconds away!

4. Specialized Tiny Units

For super-small measurements:

UnitSizeMeasures
Angstrom (Å)0.0000000001 mAtoms
Fermi (fm)0.000000000000001 mAtomic nuclei

Did You Know?

  • Your fingernail grows about 1 nm every second!
  • There are more nanometers in 1 meter than seconds in 30 years!
Quick Quiz
  1. How many centimeters in 2 meters?
  2. Which is bigger: 1 AU or 1 light-year?
  3. What would you use to measure a virus: μm or km?

Answers:

  1. 200 cm 2) 1 light-year 3) μm (micrometers)
Why This Matters

Understanding length units helps us:

  • Build things to exact sizes
  • Explore the universe (from atoms to galaxies!)
  • Create amazing technology (like computer chips with nm-scale parts)

Pro Tip: When converting units, always write out the zeros to avoid mistakes!


Units of Mass

1. The Kilogram: The Base Unit

The kilogram (kg) is the SI unit for mass. Unlike other units, it was originally defined by a physical object!

  • 1889 Definition: A platinum-iridium cylinder kept in France
  • 2019 Update: Now defined using Planck’s constant (a fundamental physics constant)

Fun Fact:
The original kilogram prototype lost about 50 micrograms (the weight of a grain of sand) over 100 years!


2. Common Mass Units

(a) Smaller Than a Kilogram
UnitSymbolEquivalentExample
Gramg0.001 kg (10⁻³)A paperclip (~1g)
Milligrammg0.000001 kg (10⁻⁶)A grain of salt (~1mg)
(b) Larger Than a Kilogram
UnitSymbolEquivalentExample
Quintalq100 kgA bag of cement (~50kg)
Metric Tonnet1000 kgA small car (~1 tonne)

Pro Tip:

  • 1 kg ≈ 2.2 pounds (for quick conversions)
  • 1 tonne ≠ 1 ton (US ton is 907 kg!)

3. Special Mass Units

(a) Atomic Mass Unit (u or amu)
  • Used for atoms and molecules
  • 1 u = 1.66 × 10⁻²⁷ kg (that’s 0.00000000000000000000000166 kg!)
  • Example: A hydrogen atom ≈ 1 u
(b) Solar Mass
  • Used in astronomy
  • 1 Solar Mass = Mass of our Sun = 2 × 10³⁰ kg

Fun Comparison:

  • The Milky Way galaxy ≈ 1.5 trillion solar masses
  • Your body contains about 7 × 10²⁷ atoms (that’s 7 followed by 27 zeros!)

Quick Quiz
  1. How many grams are in 2.5 kg?
  2. Which is heavier: 1 mg or 1 μg?
  3. What unit would you use for a star’s mass?

Answers:

  1. 2500 g
  2. 1 mg (1 μg = 0.001 mg)
  3. Solar mass

Why Mass Matters

Science: Atoms to galaxies are measured precisely.
Daily Life: Cooking, shopping, and even medicine dosing rely on mass units.
Technology: Nanotech uses picograms (trillionths of a gram)!

Did You Know?

  • A teaspoon of neutron star material would weigh 6 billion tons on Earth!


Units of Time

1. The Second: Our Fundamental Unit

The second (s) is the SI unit for time. But how do we define it?

  • Old Definition: 1/86,400 of a solar day (Earth’s rotation)
  • Modern Definition: Time for 9,192,631,770 vibrations of a cesium-133 atom!

Fun Fact:
Atomic clocks are so precise they’d only lose 1 second in 100 million years!


2. Common Time Units

(a) Smaller Than a Second
UnitSymbolEquivalentExample
Millisecondms0.001 sBlink of an eye (~300 ms)
Microsecondμs0.000001 sCamera flash (~200 μs)
Nanosecondns0.000000001 sLight travels 30 cm in 1 ns!
(b) Larger Than a Second
UnitEquivalentExample
Minute60 sShort video
Hour3,600 sMovie runtime
Day86,400 sEarth’s rotation
Year31.5 million sEarth’s orbit around the Sun

Pro Tip:

  • 1 second ≈ Your heart beats once at rest.
  • 1 nanosecond is to 1 second what 1 second is to 31.7 years!

3. Special Time Units

(a) Lunar Month
  • 29.5 days: Moon’s cycle (used in Hindu/Muslim calendars)
  • Fun Fact: February’s 28 days come from the Roman lunar calendar!
(b) Leap Year
  • 366 days (February 29)
  • Occurs every 4 years (except century years not divisible by 400)
  • Why? Earth’s orbit is 365.2422 days, not 365!

Did You Know?

  • The year 2000 was a leap year, but 1900 wasn’t!

Quick Quiz
  1. How many seconds in a day?
  2. Which is faster: 1 ms or 1 μs?
  3. Why do we have leap years?

Answers:

  1. 86,400 s
  2. 1 μs (1,000 times faster than 1 ms)
  3. To match Earth’s orbit time

Why Time Units Matter

Science: Atomic clocks power GPS and the internet.
History: Calenders track seasons and civilizations.
Daily Life: Cooking, sports, and schedules depend on precise time.

Thought Experiment:
If you yelled for 8 minutes, your voice would reach the Sun (150 million km away!).



Derived Units

What Are Derived Units?

Derived units are combinations of fundamental units (like length, mass, time) to measure complex quantities.

Example:

  • Speed = Distance (m) ÷ Time (s) → Unit = m/s

Common Derived Units (Tabulated)
QuantityFormulaDerived UnitSpecial Name (if any)Real-World Example
Arealength × widthFootball field (5,000 m²)
Volumelength × width × heightSwimming pool (50 m³)
Densitymass ÷ volumekg/m³Iron (7,870 kg/m³)
Speeddistance ÷ timem/sUsain Bolt (10.4 m/s)
Accelerationchange in speed ÷ timem/s²Car braking (5 m/s²)
Forcemass × accelerationkg·m/s²Newton (N)Apple’s weight (~1 N)
Energy/Workforce × distancekg·m²/s²Joule (J)Lifting an apple 1m (~1 J)
Powerenergy ÷ timekg·m²/s³Watt (W)Light bulb (60 W)
Pressureforce ÷ areakg/(m·s²)Pascal (Pa)Tire pressure (200,000 Pa)
Frequency1 ÷ time periods⁻¹Hertz (Hz)WiFi signal (2.4 GHz)

Key Takeaways
  1. Named Units: Some derived units honor scientists (e.g., Newton, Watt).
  2. Negative Exponents: Units like m/s can also be written as m·s⁻¹.
  3. Real-World Links:
    1. Your phone battery stores energy in kilowatt-hours (kWh).
    1. Blood pressure is measured in mmHg (millimeters of mercury).

Fun Fact:

  • 1 Pascal is the pressure of a dollar bill resting flat on a table!

Quick Quiz
  1. What’s the unit of force?
  2. How is energy different from power?
  3. Convert 5 km/h to m/s.

Answers:

  1. Newton (N)
  2. Energy = total work done; Power = how fast it’s done
  3. 1.39 m/s (5 × 1000 m ÷ 3600 s)

Why Derived Units Matter

Technology: Engineers use them to design everything from phones to rockets.
Health: Blood pressure (Pa), medication doses (mg/m³).
Daily Life: Fuel efficiency (km/L), electricity bills (kWh).

Try This:
Calculate your walking speed in m/s! (Distance ÷ Time). 😊



Rules for Writing Units – Made Simple!

Writing units correctly is super important in science to avoid confusion. Here are the key rules:


1. Capital vs. Small Letters
RuleCorrectWrongWhy?
Units named after peopleCapital for symbol, small for full nameNewton, Nnewton, n
Regular unitsAlways small letterskg, m, sKG, M, S

Examples:

  • Right: 5 kg (kilogram), 10 N (newton)
  • Wrong: 5 KG, 10 n

Fun Fact:
The unit “ampere” (A) is named after André-Marie Ampère, but “meter” has no famous namesake!


2. Writing Compound Units
RuleExampleWrong
MultiplicationUse a dot, space, or hyphen: N·m, N m, N-mNm (looks like “nanometer”)
DivisionUse negative exponents: m/s = m·s⁻¹ms⁻¹ (looks like “per millisecond”)

Pro Tip:

  • Speed: Write as “m/s” or “m·s⁻¹”, not as ms⁻¹ (which means “per millisecond”)!

3. Prefixes & Symbols
RuleExampleWrong
No double prefixes5 MW (megawatt)5 kMW (kilomegawatt)
Space between number and unit10 kg10kg
No plural for symbols20 cm20 cms

Common Mistake:
❌ “kgs” (correct: kg) – Unit symbols never change in plural!


4. Special Cases
UnitCorrect WritingWrong
Degree Celsius25°C25° C
Percent50%50 %
Time5 min, 30 s5m, 30sec

Did You Know?
The space between number and unit is crucial:

  • “5 m” = 5 meters
  • “5m” could mean “5 million” in finance!

Quick Quiz

  1. Correct this: 15newtons.
  2. Write “per second” using exponents.
  3. Why is “5 kMW” wrong?

Answers:

  1. 15 N
  2. s⁻¹
  3. Can’t use two prefixes (kilo + mega) – Write “5 GW” instead!

Why These Rules Matter

Avoids errors (e.g., confusing “mN” (millinewton) and “MN” (meganewton)).
Global standard – Scientists worldwide understand the same notation.
Saves lives! (Imagine a nurse reading “10 mg” as “10 MG” – that’s 1 billion times more!)

Pro Tip:
When in doubt, write units in full (e.g., “5 meters” instead of “5 m”).

Want to practice with real-world examples? Try converting these:

  • Speed limit: 60 km/h → ? m/s
  • Weight: 0.5 kg → ? g
    (Answers: 16.67 m/s, 500 g) 😊


Search Results for:

Unlocking the Secrets of Chemical Communication

Chemistry has its own universal language of chemistry, a precise system of symbols, formulas, and equations that scientists use to communicate reactions, elements, and compounds. This language of chemistry includes chemical symbols, valency, molecular formulas, and balanced equations, all of which follow strict rules to ensure clarity and accuracy. By mastering the language of chemistry, students and researchers can decode complex reactions, predict product formations, and understand the composition of matter. From Dalton’s early symbols to modern IUPAC conventions, this language of chemistry bridges theory and experimentation, making it an essential foundation for scientific discovery. Whether balancing equations or calculating molecular masses, fluency in the language of chemistry is key to unlocking the mysteries of the chemical world.

SYLLABUS

(i) Symbol of an element; valency; formulae of radicals and formulae of compounds. Balancing of simple chemical equations.

  • Symbol – definition; symbols of the elements used often.
  • Valency – definition; hydrogen combination and number of valence electrons of the metals and non-metals; mono, di, tri and tetra valent elements.
  • Radicals – definition; formulae and valencies.
  • Compounds – name and formulae.
  • Chemical equation – definition and examples of chemical equations with one reactant and two or three products, two reactants and one product, two reactants and two products and two reactants and three or four products; balancing of equations (by hit and trial method).

(ii) Relative Atomic Masses (atomic weights) and Relative Molecular Masses (molecular weights): either standard H atom or 1/12th of carbon 12 atom.

  • Definitions
  • Calculation of Relative Molecular Mass and percentage composition of a compound.

Summary

1. What is Chemistry?

  • Chemistry is the science that studies matter—what it’s made of, its structure, and how it changes under different conditions.
  • Matter is made up of elements, which are pure substances that cannot be broken down further.

2. Atoms and Molecules

  • Atoms are the smallest particles of an element.
  • When atoms of the same type join, they form molecules.
  • Molecules can be:
    • Monoatomic (1 atom, e.g., helium).
    • Diatomic (2 atoms, e.g., oxygen O₂).
    • Polyatomic (many atoms, e.g., sulphur S₈).

3. Compounds

  • When different elements combine, they form compounds (e.g., water H₂O, salt NaCl).
  • The smallest particle of a compound is a molecule.

4. Symbols of Elements

  • Elements are represented by symbols (e.g., O for oxygen, H for hydrogen).
  • Some symbols come from Latin names (see table below).
ElementSymbolLatin Name
GoldAuAurum
SilverAgArgentum
IronFeFerrum
SodiumNaNatrium
PotassiumKKalium

Chemical Symbols & Formulas – Easy Summary

1. What is a Chemical Symbol?

  • A symbol is a short way to write an element’s name (e.g., “S” for sulphur, “H” for hydrogen).
  • If two elements start with the same letter, we add a second small letter (e.g., “Co” for cobalt, “Cu” for copper).

2. Importance of Symbols

  • A symbol represents:
    • The name of the element (e.g., “N” = nitrogen).
    • One atom of that element.
    • The atomic mass (e.g., “N” also means 14 atomic mass units).

3. Common Element Symbols

ElementSymbolElementSymbol
MagnesiumMgHydrogenH
AluminiumAlNitrogenN
CalciumCaOxygenO
ChromiumCrChlorineCl

4. Chemical Formulas

  • A formula shows atoms in a molecule using symbols (e.g., H₂O = water).
  • Numbers (subscripts) show how many atoms are present (e.g., CO₂ = 1 carbon + 2 oxygen atoms).
  • Big numbers before a formula = how many molecules (e.g., 2H₂O = two water molecules).

5. What Formulas Tell Us

  • The type and number of atoms (e.g., NH₄Cl = 1 nitrogen + 4 hydrogen + 1 chlorine).
  • The mass ratio (e.g., CO₂ has a mass of 12 + 16×2 = 44 atomic units).

Quiz Time! (MCQs with Answers)
1. Why does cobalt have the symbol “Co”?
a) It’s short for “coconut”
b) Two letters are needed because many elements start with “C” ✅
c) It’s a secret code
2. What does “H₂O” represent?
a) A single hydrogen atom
b) One water molecule (2 hydrogen + 1 oxygen) ✅
c) A helium molecule
3. If you see “2NaCl,” what does it mean?
a) Two atoms of sodium
b) Two molecules of salt (sodium chloride) ✅
c) A typo
4. Why is gold’s symbol “Au”?
a) It’s shiny like the sun (Aurum means “shining dawn” in Latin) ✅
b) Scientists liked the sound
c) It’s short for “awesome uranium”
5. What’s the mass of CO₂ if carbon=12 and oxygen=16?
a) 12
b) 28
c) 44 ✅ (12 + 16 + 16 = 44)

Funny Chemistry Jokes 🧪😂
Why did the chemist sit on his desk?
He wanted to find his solution!
What do you call a clown who’s in jail?
A sodium chloride! (NaCl = “salt” + “silly” pun!)
Why do chemists love nitrates?
Because they’re cheaper than day rates!
What did the scientist say when he found two helium atoms?
HeHe!
Why was the mole of oxygen so happy?
It made Avogadro’s number of friends!

Valency – Simplified Summary

1. What is Valency?

  • Valency is the combining power of an atom. It tells how many hydrogen atoms (or double the oxygen atoms) an element can bond with.
  • Example: Oxygen (O) has a valency of 2 because it combines with 2 hydrogen atoms to form water (H₂O).

2. Modern Definition

  • Valency = Number of electrons an atom can lose, gain, or share to become stable.
  • Metals (like Na, Mg) lose electrons → Positive valency.
  • Non-metals (like Cl, O) gain electrons → Negative valency.

3. Variable Valency

  • Some elements (e.g., Iron, Copper) show multiple valencies due to losing electrons from different shells.
  • Naming rule:
    • Lower valency → “-ous” (e.g., Ferrous = Iron(II), Cu**+** = Cuprous).
    • Higher valency → “-ic” (e.g., Ferric = Iron(III), Cu²+ = Cupric).

4. Examples of Valency

ElementValencyExample Compound
Hydrogen (H)1H₂O
Oxygen (O)2CO₂
Nitrogen (N)3NH₃
Carbon (C)4CH₄
Iron (Fe)2 or 3FeO (Ferrous), Fe₂O₃ (Ferric)

Quiz Time! (MCQs on Valency)
1. What is the valency of nitrogen in NH₃?
a) 1
b) 3 ✅ (Correct! N bonds with 3 H atoms.)
c) 5
2. Why does iron show variable valency?
a) It’s magnetic
b) It loses electrons from different shells ✅ (Yes! Fe²⁺ and Fe³⁺ exist.)
c) It’s a non-metal
3. Cuprous (Cu⁺) and Cupric (Cu²⁺) differ in:
a) Color
b) Valency ✅ (Correct! “ous” = lower valency, “ic” = higher.)
c) Atomic mass
4. Which element always has a valency of 1?
a) Oxygen
b) Hydrogen ✅ (Right! H forms 1 bond, like in HCl.)
c) Carbon

Funny Jokes About Valency 😄
Why did the chemist break up with her boyfriend?
Because there was no valency—he couldn’t bond with her!
Why was the sodium ion (Na⁺) so confident?
Because it never lost its charge!
What did the Fe²⁺ say to the Fe³⁺?
“You’re so extra!” (Fe³⁺ has one more lost electron!)
Why do chemists love valency jokes?
Because they’re bonding!


Variable Valency – Simplified Summary

1. What is Variable Valency?

  • Some elements can change their valency (combining power) depending on the reaction.
  • This happens because they lose electrons from different electron shells to form ions.

2. Common Examples

ElementLower Valency (-ous)Higher Valency (-ic)
Iron (Fe)Fe²⁺ (Ferrous)Fe³⁺ (Ferric)
Copper (Cu)Cu⁺ (Cuprous)Cu²⁺ (Cupric)
Mercury (Hg)Hg⁺ (Mercurous)Hg²⁺ (Mercuric)
Lead (Pb)Pb²⁺ (Plumbous)Pb⁴⁺ (Plumbic)

3. Why Does It Happen?

  • Atoms may lose extra electrons from inner shells to form different ions.
  • Example: Iron can lose 2 electrons (Fe²⁺) or 3 electrons (Fe³⁺).

4. Naming Rules

  • Lower valency → Ends with “-ous” (e.g., Ferrous = Fe²⁺).
  • Higher valency → Ends with “-ic” (e.g., Ferric = Fe³⁺).
  • Modern naming uses Roman numerals (e.g., Iron(II) = Fe²⁺, Iron(III) = Fe³⁺).

Quiz Time! (MCQs on Variable Valency)
1. What is the valency of copper in Cu₂O?
a) 1 ✅ (Correct! Cuprous = Cu⁺.)
b) 2
c) 3
2. Why does iron show variable valency?
a) It’s magnetic
b) It loses electrons from different shells ✅ (Yes! Fe can lose 2 or 3 electrons.)
c) It’s a gas
3. What is the modern name for Fe³⁺?
a) Ferrous
b) Iron(II)
c) Iron(III) ✅ (Correct! Higher valency = “-ic” or Roman numeral III.)
4. Which element does NOT show variable valency?
a) Iron (Fe)
b) Sodium (Na) ✅ (Right! Na always has a valency of 1.)
c) Lead (Pb)

Funny Jokes About Variable Valency 😆
Why did Fe²⁺ break up with Fe³⁺?
Because Fe³⁺ was too charged for the relationship!
Why did the chemistry teacher love variable valency?
Because it made bonding more exciting!
What did Cuprous (Cu⁺) say to Cupric (Cu²⁺)?
“You’re always so extra!”
Why was Mercury (Hg) so unpredictable?
Because it kept changing its charge—just like its temperature!

Radicals – Simplified Summary

1. Definition of Radicals (Pink Section)

  • A radical is an atom or group of atoms that behaves as a single charged unit (positive or negative) in chemical reactions.
  • Example: In NaCl, Na⁺ (sodium ion) and Cl⁻ (chloride ion) are radicals that combine to form salt.

2. Types of Radicals

  1. Simple Radicals: Single charged atoms (e.g., Na⁺, Cl⁻).
  2. Compound Radicals: Groups of atoms with a net charge (e.g., NH₄⁺, SO₄²⁻).

3. Classification by Origin

  • Basic/Electropositive Radicals: Come from bases (e.g., Na⁺ from NaOH).
  • Acid/Electronegative Radicals: Come from acids (e.g., Cl⁻ from HCl).

4. Classification by Valency

ValencyElectropositive (Cations)Electronegative (Anions)
Monovalent (1)Na⁺, K⁺, NH₄⁺Cl⁻, NO₃⁻, OH⁻
Divalent (2)Ca²⁺, Mg²⁺, Fe²⁺SO₄²⁻, CO₃²⁻, O²⁻
Trivalent (3)Al³⁺, Fe³⁺PO₄³⁻, BO₃³⁻
Tetravalent (4)Pb⁴⁺, Sn⁴⁺C⁴⁻, Fe(CN)₆⁴⁻

5. Complete Tables of Radicals

Table of Electropositive Radicals (Cations)

ValencyRadicalSymbolExample Source
Monovalent (9)SodiumNa⁺NaOH
 PotassiumK⁺KOH
 AmmoniumNH₄⁺NH₄OH
Divalent (13)CalciumCa²⁺Ca(OH)₂
 MagnesiumMg²⁺Mg(OH)₂
 Iron(II)Fe²⁺Fe(OH)₂
Trivalent (6)AluminiumAl³⁺Al(OH)₃
 Iron(III)Fe³⁺Fe(OH)₃
Tetravalent (3)Lead(IV)Pb⁴⁺Pb(OH)₄

Table of Electronegative Radicals (Anions)

ValencyRadicalSymbolExample Source
Monovalent (20)ChlorideCl⁻HCl
 NitrateNO₃⁻HNO₃
 HydroxideOH⁻NaOH
Divalent (15)SulphateSO₄²⁻H₂SO₄
 CarbonateCO₃²⁻H₂CO₃
 OxideO²⁻
Trivalent (8)PhosphatePO₄³⁻H₃PO₄
 BorateBO₃³⁻H₃BO₃
Tetravalent (2)CarbideC⁴⁻

6. Key Properties

  • Radicals cannot exist freely – they always pair to form neutral compounds.
  • In water, salts split into radicals (e.g., NaCl → Na⁺ + Cl⁻).
  • The valency determines how radicals combine (e.g., Ca²⁺ + 2Cl⁻ → CaCl₂).

Quiz Time! (MCQs on Radicals)
1. Which is a compound radical?
a) Na⁺
b) SO₄²⁻ ✅ (Correct! It’s a group of atoms with a charge.)
2. What valency is Al³⁺?
a) 1
b) 3 ✅ (Right! The superscript “3+” shows its valency.)
3. Which radical comes from HNO₃?
a) CO₃²⁻
b) NO₃⁻ ✅ (Yes! Nitrate is from nitric acid.)
4. How many Cl⁻ ions balance Ca²⁺?
a) 1
b) 2 ✅ (Correct! Ca²⁺ needs two monovalent Cl⁻ ions.)

Funny Jokes About Radicals 😄
Why did Na⁺ and Cl⁻ get married?
Their bond was unbreakably ionic!
Why was SO₄²⁻ a bad comedian?
Its jokes were too sulfuric!
What did NH₄⁺ say to OH⁻?
“You’re OH-some!”
Why did PO₄³⁻ refuse to fight?
It had three charges to defend itself!

Here are the properly formatted tables for your reference:

Table showing List of some common electrovalent positive ions (basic radicals)

Monovalent electropositiveDivalent electropositiveTrivalent electropositive
1. Ammonium NH₄⁺1. Argentic [Silver(II)] Ag²⁺1. Aluminium Al³⁺
2. Aurous [Gold (I)] Au⁺2. Barium Ba²⁺2. Arsenic As³⁺
3. Argentous [Silver (I)] Ag⁺3. Calcium Ca²⁺3. Auric [Gold (III)] Au³⁺
4. Cuprous [Copper (I)] Cu⁺4. Cupric [Copper(II)] Cu²⁺4. Bismuth Bi³⁺
5. Hydrogen H⁺5. Ferrous [Iron (II)] Fe²⁺5. Chromium Cr³⁺
6. Lithium Li⁺6. Magnesium Mg²⁺6. Ferric [Iron (III)] Fe³⁺
7. Sodium Na⁺7. Manganese Mn²⁺ 
8. Potassium K⁺8. Mercuric [Mercury (II)] Hg²⁺Tetravalent electropositive
9. Mercurous [Mercury (I)] Hg⁺9. Nickel Ni²⁺1. Plumbic [Lead (IV)] Pb⁴⁺
 10. Plumbous [Lead (II)] Pb²⁺2. Platinic [Platinum (IV)] Pt⁴⁺
 11. Platinous [Platinum (II)] Pt²⁺3. Stannic [Tin (IV)] Sn⁴⁺
 12. Stannous [Tin (II)] Sn²⁺ 
 13. Zinc Zn²⁺ 

Table shhowing List of some common electrovalent negative ions (acid radicals)

Monovalent electronegativeDivalent electronegativeTrivalent electronegative
1. Acetate CH₃COO⁻1. Carbonate CO₃²⁻1. Arsenate AsO₄³⁻
2. Bicarbonate/Hydrogen carbonate HCO₃⁻2. Dichromate Cr₂O₇²⁻2. Nitride N³⁻
3. Bisulphide/Hydrogen sulphide HS⁻3. Oxide O²⁻3. Aluminate AlO₃³⁻
4. Bisulphate/Hydrogen sulphate HSO₄⁻4. Peroxide O₂²⁻4. Arsenite AsO₃³⁻
5. Bisulphite/Hydrogen sulphite HSO₃⁻5. Sulphate SO₄²⁻5. Phosphide P³⁻
6. Bromide Br⁻6. Sulphite SO₃²⁻6. Phosphite PO₃³⁻
7. Chloride Cl⁻7. Sulphide S²⁻7. Phosphate PO₄³⁻
8. Permanganate MnO₄⁻8. Silicate SiO₃²⁻8. Borate BO₃³⁻
9. Fluoride F⁻9. Thiosulphate S₂O₃²⁻ 
10. Hydride H⁻10. Zincate ZnO₂²⁻Tetravalent electronegative
11. Hydroxide OH⁻11. Plumbite PbO₂²⁻1. Carbide C⁴⁻
12. Iodide I⁻12. Stannate SnO₃²⁻2. Ferrocyanide Fe(CN)₆⁴⁻
13. Cyanide CN⁻13. Manganate MnO₄²⁻ 
14. Nitrate NO₃⁻14. Chromate CrO₄²⁻ 
15. Nitrite NO₂⁻15. Oxalate (COO)₂²⁻ 
16. Chlorite ClO₂⁻  
17. Hypochlorite ClO⁻  
18. Chlorate ClO₃⁻  
19. Perchlorate ClO₄⁻  
20. Meta-aluminate AlO₂⁻  

Writing Chemical Formulae – Clear & Concise Guide

 
1. The Criss-Cross Method Explained
 


Identify the Ions
Write the positive ion (cation) first, then the negative ion (anion)
Example: For aluminum oxide → Al³⁺ and O²⁻
Note Their Valencies
Write the valency numbers as superscripts (ignore + or – signs)
Example: Al³ and O²
Cross the Numbers
Swap the valency numbers to become subscripts
Example: Al³O² becomes Al₂O₃
Simplify if Possible
Reduce subscripts to lowest whole numbers
Example: Ca²O² simplifies to CaO

2. Practical Examples

CompoundIonsValenciesCriss-CrossFinal Formula
Magnesium ChlorideMg²⁺, Cl⁻Mg², Cl¹Mg₁Cl₂MgCl₂
Aluminum SulfateAl³⁺, SO₄²⁻Al³, SO₄²Al₂(SO₄)₃Al₂(SO₄)₃
Calcium PhosphateCa²⁺, PO₄³⁻Ca², PO₄³Ca₃(PO₄)₂Ca₃(PO₄)₂

3. Essential Chemical Formulae

Compound NameFormulaContaining Ions
Sodium ChlorideNaClNa⁺, Cl⁻
Potassium NitrateKNO₃K⁺, NO₃⁻
Ammonium Carbonate(NH₄)₂CO₃NH₄⁺, CO₃²⁻
Iron(III) OxideFe₂O₃Fe³⁺, O²⁻

4. Naming Compounds – 5 Key Rules

 
Metal + Non-Metal Compounds
Name: Metal name + non-metal root + “-ide”
Example: CaCl₂ = Calcium chloride
Compounds with Two Non-Metals
Use prefixes (mono-, di-, tri-) to show atom counts
Example: N₂O₅ = Dinitrogen pentoxide
Oxygen-Containing Compounds
Name changes based on oxygen atoms:
Hypo- (least O), -ite (some O), -ate (more O), per- (most O)
Example: NaClO = Sodium hypochlorite
Acid Naming
Binary acids: “Hydro-” + non-metal + “-ic acid” (HCl = Hydrochloric acid)
Oxyacids: Non-metal + “-ous” or “-ic” + “acid” (H₂SO₄ = Sulfuric acid)
Common Names
Some compounds have special names:
H₂O = Water
NH₃ = Ammonia
CH₄ = Methane

Practice Quiz
What’s the formula when Ca²⁺ combines with NO₃⁻?
a) CaNO₃
b) Ca(NO₃)₂ ✓ (Correct! Needs two NO₃⁻ to balance Ca²⁺)
How would you name P₂O₅?
a) Phosphorus oxide
b) Diphosphorus pentoxide ✓ (Right! Uses prefixes)
Which is the correct name for H₂SO₃?
a) Sulfuric acid
b) Sulfurous acid ✓ (Correct! -ite becomes -ous in acids)
What’s wrong with “AlO” as a formula?
a) Needs simplification
b) Charges aren’t balanced ✓ (Al³⁺ needs O²⁻ in 2:3 ratio)
Chemistry Humor
Why did the chemist refuse to write KO?
It looked too explosive!
What did the sodium say to the chloride?
“Our bond is unbreakable!”
Why was the chemical equation sad?
It couldn’t balance its life!
What’s a chemist’s favorite dance?
The ionic shuffle!


Chemical Equations – Simplified Guide

1. Writing Chemical Equations (4 Steps)


 
List Reactants & Products
Reactants (left) and products (right) separated by an arrow (→)
Example: C + O₂ → CO₂
Use Correct Symbols/Formulae
Write elements/molecules in their standard forms
Example: H₂ (not H) for hydrogen gas
Add State Symbols (Optional)
(s)=solid, (l)=liquid, (g)=gas, (aq)=aqueous
Example: 2H₂(g) + O₂(g) → 2H₂O(l)
Balance the Equation
Ensure equal atoms on both sides (law of conservation of mass)

 
2. Example Equations


 
Word to Chemical:
“Hydrogen reacts with oxygen to form water”
2H₂ + O₂ → 2H₂O
Combustion Reaction:
CH₄ + 2O₂ → CO₂ + 2H₂O

3. Types of Chemical Reactions

TypeExampleEquation
1 reactant → 2+ productsDecomposition2H₂O → 2H₂ + O₂
2 reactants → 1 productCombinationN₂ + 3H₂ → 2NH₃
2 reactants → 2 productsDisplacementZn + H₂SO₄ → ZnSO₄ + H₂
2 reactants → 3+ productsComplexCu + 4HNO₃ → Cu(NO₃)₂ + 2NO₂ + 2H₂O

 

4. Skeleton vs Balanced Equations

  • Skeleton (Unbalanced): KNO₃ → KNO₂ + O₂ (O atoms unequal)
  • Balanced: 2KNO₃ → 2KNO₂ + O₂ (All atoms equal)

5. Why Balance Equations?

  • Law of Conservation of Mass: Matter cannot be created/destroyed. Total mass of reactants = total mass of products.
  • Example: 2H₂ + O₂ → 2H₂O (4g H₂ + 32g O₂ → 36g H₂O)

6. Balancing Methods

A. Hit & Trial Method

  1. Count Atoms: List atoms on both sides
  2. Balance One Element at a Time (start with least frequent)
  3. Example:
  4. Cu + HNO₃ → Cu(NO₃)₂ + NO₂ + H₂O (Unbalanced)
    Steps:
    1. Balance Cu: Already 1 on both sides
    2. Balance N: 1→3 → Multiply HNO₃ by 4
    3. Final: Cu + 4HNO₃ → Cu(NO₃)₂ + 2NO₂ + 2H₂O

B. Partial Equation Method

  1. Break Complex Reactions into simpler steps
  2. Balance Each Step, then combine
  3. Example (Iodine Liberation):
  4. Step 1: H₂O₂ → H₂O + [O]
    Step 2: 2KI + H₂O + [O] → 2KOH + I₂
    Combined: 2KI + H₂O₂ → 2KOH + I₂

Key Takeaways

  • Always write correct formulae before balancing
  • Balance by adjusting coefficients (never change subscripts)
  • For complex reactions, partial equations simplify the process

Memory Tip: “Balance Like a Pro – Start with Metals, Save O & H for Last!”

Chemical Formula Writing Examples

Name of CompoundSymbols with valenciesExchange of valencyFormula
Magnesium chlorideMg²⁺ Cl⁻¹Mg² Cl₁MgCl₂
Calcium oxideCa²⁺ O²⁻ [Dividing by H.C.F. it becomes Ca¹⁺ O¹⁻]Ca² O₂ → Ca¹ O¹CaO
Aluminium hydroxideAl³⁺ (OH)⁻¹Al³ (OH)₁Al(OH)₃
Phosphorus trioxideP³⁺ O²⁻P² O₃P₂O₃
Sodium meta-aluminateNa⁺ AlO₂⁻Na¹ AlO₂¹NaAlO₂
Sodium aluminateNa⁺ AlO₃³⁻Na₃ AlO₃¹Na₃AlO₃

Table with some Important Chemical Formulae (Part 1)

Chemical NameSymbol with chargeFormulaChemical NameSymbol with chargeFormula
Potassium chlorideK¹⁺Cl¹⁻KClPotassium plumbiteK¹⁺PbO₂²⁻K₂PbO₂
Potassium bromideK¹⁺Br¹⁻KBrSodium chlorideNa¹⁺Cl¹⁻NaCl
Potassium iodideK¹⁺I¹⁻KISodium hydroxideNa¹⁺OH¹⁻NaOH
Potassium hydroxideK¹⁺OH¹⁻KOHSodium nitriteNa¹⁺NO₂¹⁻NaNO₂
Potassium nitriteK¹⁺NO₂¹⁻KNO₂Sodium nitrateNa¹⁺NO₃¹⁻NaNO₃
Potassium nitrateK¹⁺NO₃¹⁻KNO₃Sodium hydrogen carbonateNa¹⁺HCO₃¹⁻NaHCO₃
Potassium hydrogen carbonateK¹⁺HCO₃¹⁻KHCO₃Sodium hydrogen sulphiteNa¹⁺HSO₄¹⁻NaHSO₃
Potassium hydrogen sulphiteK¹⁺HSO₃¹⁻KHSO₃Sodium hydrogen sulphateNa¹⁺HSO₄¹⁻NaHSO₄
Potassium hydrogen sulphateK¹⁺HSO₄¹⁻KHSO₄Sodium metaluminateNa¹⁺AlO₂¹⁻NaAlO₂
Potassium metaluminateK¹⁺AlO₂¹⁻KAlO₂Sodium sulphateNa¹⁺SO₄²⁻Na₂SO₃
Potassium permanganateK¹⁺MnO₄¹⁻KMnO₄Sodium carbonateNa¹⁺SO₄²⁻Na₂SO₄
Potassium sulphiteK¹⁺SO₃²⁻K₂SO₃Sodium zincateNa¹⁺ZnO₂²⁻Na₂ZnO₂
Potassium sulphateK¹⁺SO₄²⁻K₂SO₄Sodium plumbiteNa¹⁺PbO₂²⁻Na₂PbO₂
Potassium carbonateK¹⁺CO₃²⁻K₂CO₃Silver chlorideAg¹⁺Cl¹⁻AgCl
Potassium dichromateK¹⁺Cr₂O₇²⁻K₂Cr₂O₇Ammonium chlorideNH₄¹⁺Cl¹⁻NH₄Cl
Potassium zincateK¹⁺ZnO₂²⁻K₂ZnO₂Ammonium sulphateNH₄¹⁺SO₄²⁻(NH₄)₂SO₄
   Ammonium hydroxideNH₄¹⁺OH¹⁻NH₄OH

Table with some Important Chemical Formulae (Part 2 – Calcium Compounds)

Chemical NameSymbol with chargeFormula
Calcium chlorideCa²⁺Cl¹⁻CaCl₂
Calcium hydroxideCa²⁺OH¹⁻Ca(OH)₂
Calcium nitrateCa²⁺NO₃¹⁻Ca(NO₃)₂
Calcium hydrogen carbonateCa²⁺HCO₃¹⁻Ca(HCO₃)₂
Calcium hydrogen sulphiteCa²⁺HSO₃¹⁻Ca(HSO₃)₂
Calcium sulphiteCa²⁺SO₃²⁻CaSO₃
Calcium sulphateCa²⁺SO₄²⁻CaSO₄
Calcium carbonateCa²⁺CO₃²⁻CaCO₃
Calcium oxideCa²⁺O²⁻CaO
Calcium silicateCa²⁺SiO₃²⁻CaSiO₃
Calcium nitrideCa²⁺N³⁻Ca₃N₂

Table of some Important Chemical Formulae (Part 3 – Magnesium and Zinc Compounds)

Chemical NameSymbol with chargeFormula
Magnesium chlorideMg²⁺Cl¹⁻MgCl₂
Magnesium hydroxideMg²⁺OH¹⁻Mg(OH)₂
Magnesium nitrateMg²⁺NO₃¹⁻Mg(NO₃)₂
Magnesium oxideMg²⁺O²⁻MgO
Magnesium nitrideMg²⁺N³⁻Mg₃N₂
Zinc chlorideZn²⁺Cl¹⁻ZnCl₂
Zinc hydroxideZn²⁺OH¹⁻Zn(OH)₂
Zinc nitrateZn²⁺NO₃¹⁻Zn(NO₃)₂
Zinc sulphateZn²⁺SO₄²⁻ZnSO₄
Zinc carbonateZn²⁺CO₃²⁻ZnCO₃
Zinc oxideZn²⁺O²⁻ZnO
Lead [II] chloridePb²⁺Cl¹⁻PbCl₂
Lead [II] bromidePb²⁺Br¹⁻PbBr₂
Lead [II] hydroxidePb²⁺OH¹⁻Pb(OH)₂
Lead [II] nitratePb²⁺NO₃¹⁻Pb(NO₃)₂

Table of some Important Chemical Formulae (Part 4 – Other Metal Compounds)

Chemical NameSymbol with chargeFormula
Lead [II] sulphatePb²⁺SO₄²⁻PbSO₄
Lead [II] oxidePb²⁺O²⁻PbO
Manganese chlorideMn²⁺Cl¹⁻MnCl₂
Manganese sulphateMn²⁺SO₄²⁻MnSO₄
Aluminium chlorideAl³⁺Cl¹⁻AlCl₃
Aluminium sulphateAl³⁺SO₄²⁻Al₂(SO₄)₃
Aluminium hydroxideAl³⁺OH¹⁻Al(OH)₃
Aluminium sulphideAl³⁺S²⁻Al₂S₃
Aluminium oxideAl³⁺O²⁻Al₂O₃
Chromium chlorideCr³⁺Cl¹⁻CrCl₃
Chromium sulphateCr³⁺SO₄²⁻Cr₂(SO₄)₃
Chromium oxideCr³⁺O²⁻Cr₂O₃
Copper [I] (cuprous)Cu¹⁺Cl¹⁻CuCl
Copper [I] chlorideCu¹⁺O²⁻Cu₂O
Copper [I] oxideCu¹⁺S²⁻Cu₂S
Copper [I] sulphideCu²⁺Cl¹⁻CuCl₂
Copper [II] (cupric)Cu²⁺OH¹⁻Cu(OH)₂
Copper [II] chlorideCu²⁺NO₃¹⁻Cu(NO₃)₂
Copper [II] hydroxideCu²⁺SO₄²⁻CuSO₄
Copper [II] nitrateCu²⁺S²⁻CuS
Copper [II] sulphateCu²⁺O²⁻CuO
Copper [II] sulphideCu²⁺O²⁻CuO
Copper [II] oxideCu²⁺SO₄²⁻CuSO₄

Table with some Important Chemical Formulae (Part 5 – Iron Compounds)

Chemical NameSymbol with chargeFormula
Iron [II] (ferrous)  
Iron [II] chlorideFe²⁺Cl¹⁻FeCl₂
Iron [II] hydroxideFe²⁺OH¹⁻Fe(OH)₂
Iron [II] nitrateFe²⁺NO₃¹⁻Fe(NO₃)₂
Iron [II] sulphateFe²⁺SO₄²⁻FeSO₄
Iron [II] sulphideFe²⁺S²⁻FeS
Iron [II] oxideFe²⁺O²⁻FeO
Iron [III] (ferric)  
Iron [III] chlorideFe³⁺Cl¹⁻FeCl₃
Iron [III] sulphateFe³⁺SO₄²⁻Fe₂(SO₄)₃
Iron [III] hydroxideFe³⁺OH¹⁻Fe(OH)₃
Iron [III] sulphideFe³⁺S²⁻Fe₂S₃
Iron [III] nitrateFe³⁺NO₃¹⁻Fe(NO₃)₃
Iron [III] oxideFe³⁺O²⁻Fe₂O₃

Naming Certain Compounds (Chemical Nomenclature) and Valency Calculation – Summary

1. Naming Chemical Compounds (5 Rules)

(1) Metal + Non-Metal Compounds
Format: Metal name + Non-metal root + “-ide”
Example:
Calcium + Nitrogen → Calcium nitride (Ca₃N₂)


(2) Two Non-Metals
Use prefixes (mono-, di-, tri-) to indicate atom counts.
Example:
PCl₃ → Phosphorus trichloride
PCl₅ → Phosphorus pentachloride


(3) Compounds with Oxygen
Naming depends on oxygen count:
Hypo-…-ite: Least oxygen (e.g., NaClO → Sodium hypochlorite)
…-ite: 2 oxygen (e.g., NaClO₂ → Sodium chlorite)
…-ate: 3 oxygen (e.g., NaClO₃ → Sodium chlorate)
Per-…-ate: Most oxygen (e.g., NaClO₄ → Sodium perchlorate)


(4) Naming Acids
Binary Acids (H + Non-metal):
“Hydro-” + Non-metal root + “-ic acid”
Example: HCl → Hydrochloric acid
Oxyacids (H + Polyatomic ion):
“-ate” ion → “-ic acid” (H₂SO₄ → Sulfuric acid)
“-ite” ion → “-ous acid” (H₂SO₃ → Sulfurous acid)


(5) Common (Trivial) Names
NH₃ → Ammonia (not “Nitrogen trihydride”)
H₂O → Water (not “Dihydrogen oxide”)


2. Calculating Valency from Formulas

Steps:

  1. Write the formula (e.g., NO₂).
  2. Swap subscripts/superscripts:
    NO₂ → N²O¹
  3. Multiply by known valencies (O = 2):
    N²O¹ → N⁴O²
  4. Result: Valency of N = 4.

Example Table:

StepActionExample (NO₂)
1Write formulaNO₂
2Swap subscriptsN²O¹
3Multiply by O’s valency (2)N⁴O²
4Determine valencyN = 4

Key Points:

  • Uses standard valencies: H=1, O=2, Cl=1.
  • Works for both elements and radicals.

Key Takeaways

  • Naming Rules: Depends on composition (metal/non-metal, oxygen content, acid type).
  • Valency Calculation: Swap subscripts, adjust using known valencies, and simplify.
  • Exceptions: Common names (e.g., water, ammonia) override systematic rules.

Exercise 1(A) Solutions

Question 1: What is a symbol? What information does it convey?

Answer:
A chemical symbol is a short representation of an element that conveys three key pieces of information:

  1. The name of the element (e.g., ‘S’ stands for sulphur)
  2. One atom of that element
  3. The atomic mass of the element (e.g., ‘N’ represents 14 atomic mass units of nitrogen) (From Chapter 1.2 – Chemical Symbols section, page 2 of the textbook)

Question 2: Why is the symbol S for sulphur, but Na for sodium and Si for silicon?

Answer:
Chemical symbols follow these conventions:

  • Sulphur (‘S’): Derived from its English name
  • Sodium (‘Na’): From Latin “Natrium” to avoid confusion with sulphur
  • Silicon (‘Si’): From Latin “Silex” (flint) to distinguish it from other elements This system was established by Berzelius to create a standardized notation. (Refer to Table 1.1 and Chapter 1.2, page 2)

Question 3: If the symbol for cobalt, Co, were written as CO, what would be wrong with it?

Answer:
The capitalization makes a critical difference:

  • ‘Co’ represents the element cobalt (a single metallic atom)
  • ‘CO’ represents carbon monoxide (a compound molecule containing one carbon and one oxygen atom) This distinction prevents confusion between elements and compounds in chemical notation. (From Chapter 1.2 note about symbol capitalization)

Question 4: What do the following symbols stand for?

(a) H
Represents one atom of the element hydrogen (atomic number 1)

(b) H₂
Represents one molecule of hydrogen gas consisting of two covalently bonded hydrogen atoms

(c) 2H
Represents two separate, uncombined atoms of hydrogen (From Chapter 1.2 – Significance of Symbols section)

Question 5:

(a) Explain the terms ‘valency’ and ‘variable valency’
Valency refers to the combining capacity of an atom, determined by the number of electrons it can lose, gain or share to achieve stability. Variable valency occurs when certain elements (particularly transition metals like iron, copper) can exhibit different valencies in different compounds due to the availability of electrons from multiple shells. (From Chapter 1.4 – Valency section, pages 4-5)

(b) How are elements with variable valency named?
Elements showing variable valency use:

  • The suffix “-ous” for the lower valency state (e.g., Ferrous for Fe²⁺)
  • The suffix “-ic” for the higher valency state (e.g., Ferric for Fe³⁺) Modern nomenclature uses Roman numerals (e.g., Iron(II) oxide for FeO) (From Chapter 1.4 – Variable Valency section, page 5)

Question 6: Give the formula and valency of:

(a) Aluminate → AlO₂⁻ (Valency: 1) (b) Chromate → CrO₄²⁻ (Valency: 2) (c) Aluminium → Al³⁺ (Valency: 3) (d) Cupric → Cu²⁺ (Valency: 2) (From Tables 1.3 and 1.4, pages 5-6)

Question 7: What is a chemical formula? What is the rule for writing a formula correctly?

Answer:
A chemical formula is the symbolic representation of a molecule that shows:

  1. The elements present
  2. Their relative proportions Rules for writing:
  3. The electropositive element is written first
  4. The electronegative element follows
  5. Valencies are balanced using the criss-cross method
  6. Subscripts are reduced to simplest whole numbers (From Chapter 1.3 – Formula section, page 3)

Question 8: What do you understand by the following terms?

(a) Acid radical
A negatively charged ion (anion) derived from acids that can combine with positive ions to form salts. Examples include Cl⁻ (from HCl) and SO₄²⁻ (from H₂SO₄).

(b) Basic radical
A positively charged ion (cation) derived from bases that can combine with negative ions to form salts. Examples include Na⁺ (from NaOH) and NH₄⁺ (from NH₄OH). (From Chapter 1.5 – Radicals section, page 5)

Question 9: Match the following compounds with their formulae

Original Table:

CompoundFormula Code
(a) Boric acid(i) NaOH
(b) Phosphoric acid(ii) SiO₂
(c) Nitrous acid(iii) Na₂CO₃
(d) Nitric acid(iv) KOH
(e) Sulphurous acid(v) CaCO₃
(f) Sulphuric acid(vi) NaHCO₃
(g) Hydrochloric acid(vii) H₂S
(h) Silica (sand)(viii) H₂O
(i) Caustic soda (sodium hydroxide)(ix) PH₃
(j) Caustic potash (potassium hydroxide)(x) CH₄
(k) Washing soda (sodium carbonate)(xi) NH₃
(l) Baking soda (sodium bicarbonate)(xii) HCl
(m) Limestone (calcium carbonate)(xiii) H₂SO₃
(n) Water(xiv) HNO₃
(o) Hydrogen sulphide(xv) HNO₂
(p) Ammonia(xvi) H₃BO₃
(q) Phosphine(xvii) H₃PO₄
(r) Methane(xviii) H₂SO₄

Answer Table:

CompoundCorrect FormulaMatch Code
(a) Boric acidH₃BO₃(xvi)
(b) Phosphoric acidH₃PO₄(xvii)
(c) Nitrous acidHNO₂(xv)
(d) Nitric acidHNO₃(xiv)
(e) Sulphurous acidH₂SO₃(xiii)
(f) Sulphuric acidH₂SO₄(xviii)
(g) Hydrochloric acidHCl(xii)
(h) Silica (sand)SiO₂(ii)
(i) Caustic sodaNaOH(i)
(j) Caustic potashKOH(iv)
(k) Washing sodaNa₂CO₃(iii)
(l) Baking sodaNaHCO₃(vi)
(m) LimestoneCaCO₃(v)
(n) WaterH₂O(viii)
(o) Hydrogen sulphideH₂S(vii)
(p) AmmoniaNH₃(xi)
(q) PhosphinePH₃(ix)
(r) MethaneCH₄(x)

(From common names reference in the textbook)

Question 10: Select the basic and acidic radicals in:

(a) MgSO₄ → Basic: Mg²⁺, Acidic: SO₄²⁻

(b) (NH₄)₂SO₄ → Basic: NH₄⁺, Acidic: SO₄²⁻

(c) Al₂(SO₄)₃ → Basic: Al³⁺, Acidic: SO₄²⁻

(d) ZnCO₃ → Basic: Zn²⁺, Acidic: CO₃²⁻

(e) Mg(OH)₂ → Basic: Mg²⁺, Acidic: OH⁻

(From Chapter 1.5 – Radicals section and Tables 1.3-1.4)

Question 11: Formula for A³⁺ + B²⁻?

Answer:
Using the criss-cross method:

  1. Write symbols with valencies: A³⁺ B²⁻
  2. Cross the valencies: A₂B₃ Example: Al³⁺ + O²⁻ → Al₂O₃ (aluminium oxide)

 (From Chapter 1.6 – Writing Chemical Formulae, page 6)

Question 12: Write chemical formula of:

(a) Aluminium sulphate → Al₂(SO₄)₃
Explanation: Al³⁺ + SO₄²⁻ → Cross valencies (2×3=6) → Al₂(SO₄)₃

(b) Ammonium sulphate → (NH₄)₂SO₄
Explanation: NH₄⁺ + SO₄²⁻ → Cross valencies → (NH₄)₂SO₄

(c) Zinc sulphate → ZnSO₄
Explanation: Zn²⁺ + SO₄²⁻ → Simplify 2:2 ratio → ZnSO₄
(From Chapter 1.6 – Criss-cross method)


Question 13: Write chemical names of:

(a) Ca₃(PO₄)₂ → Calcium phosphate
Rule: Metal + polyatomic ion name

(b) K₂CO₃ → Potassium carbonate
Rule: “-ate” suffix for CO₃²⁻

(c) K₂MnO₄ → Potassium manganate
Rule: “-ate” suffix for MnO₄²⁻

(d) Mn₃(BO₃)₂ → Manganese borate
Rule: Metal + “-ate” for BO₃³⁻

(e) Mg(HCO₃)₂ → Magnesium bicarbonate
Rule: “Hydrogen carbonate” alternate name

(From Chapter 1.7 – Naming Compounds)


Question 14: Identify radicals and write formulae for:

(a) Barium sulphate

  • Basic radical: Ba²⁺
  • Acidic radical: SO₄²⁻
  • Formula: BaSO₄

(b) Bismuth nitrate

  • Basic radical: Bi³⁺
  • Acidic radical: NO₃⁻
  • Formula: Bi(NO₃)₃

(Process repeated for all sub-questions using Tables 1.3-1.4)


Question 15: Name these chlorine-oxygen compounds:

(a) NaClO → Sodium hypochlorite
Rule: “Hypo-” prefix for least oxygen

(b) NaClO₂ → Sodium chlorite
Rule: “-ite” suffix for intermediate oxygen

(c) NaClO₃ → Sodium chlorate
Rule: “-ate” suffix for more oxygen

(d) NaClO₄ → Sodium perchlorate
Rule: “Per-” prefix for most oxygen
(From Chapter 1.7 – Oxygen compounds naming)


Question 16: Complete the statements:

(a) The formula represents:
(iii) a molecule
Explanation: Formulas show molecular composition (e.g., H₂O = one water molecule)

(b) Correct formula of aluminium oxide:
(iii) Al₂O₃
Explanation: Al³⁺ + O²⁻ → Criss-cross gives Al₂O₃

(c) Valency of nitrogen in NO₂:
(iv) four
Calculation:

  1. NO₂ → N²O¹
  2. Multiply by O’s valency (2): N⁴O²
    (From Valency calculation method in Chapter 1.8)

Key Takeaways

  1. Symbols: Latin/English origins, capitalization matters (Co vs CO)
  2. Valency: Determines compound formation (use criss-cross method)
  3. Naming:
    1. “-ide” for simple anions
    1. “-ite”/”-ate” for oxyanions
    1. Prefixes for non-metal compounds
  4. Radicals: Cations (positive) and anions (negative) combine to form neutral C + O2 → CO2compounds

CHEMICAL EQUATION

A chemical equation is a symbolic representation of a chemical reaction using the symbols and formulae of the substances involved. For example, the burning of coal in air produces carbon dioxide, which can be represented as:

  • Word equation :
    Carbon + Oxygen → Carbon dioxide
  • Chemical equation : \(C+O_2→CO_2\)

Steps for Writing a Chemical Equation:

  1. Write the symbols or formulae of the reactants on the left, separated by a (+) sign.
  2. Write the symbols or formulae of the products on the right, separated by a (+) sign.
  3. Place an arrow  between the reactants and products to show the direction of the reaction.
  4. Represent reactants and products in their molecular forms (since atomic forms are usually unstable).

Example:
Sodium reacts with water to form sodium hydroxide and hydrogen: \(2Na+2H_2 O→2NaOH+H_2\)

A chemical equation clearly identifies the reactants (starting substances) and products (substances formed). For instance: \(CuSO_4 + 2NaOH \longrightarrow Cu(OH)_2+Na_2SO_4\)
Here, copper sulphate and sodium hydroxide (reactants) yield copper hydroxide and sodium sulphate (products).

Types of Chemical Reactions:

Chemical reactions can involve:

One reactant and two or more products:

Example: \(Example: CaCO_3\longrightarrow Cao + CO_2\) (thermal decomposition).

Two reactants and one product:

Example: \(N_2+3H_2\longrightarrow 2NH_3\) (synthesis of ammonia).

Two reactants and two products:

Example: \(AgNO_3 + NaCl\longrightarrow AgCl+NaNO_3\) (double displacement).

Two reactants and three or more products:

Search Results for:

Simple Explanation of Rational Numbers

Simple Explanation of Properties of Rational Numbers

1. Closed Under Operations

  • Meaning: When you add, subtract, multiply, or divide two rational numbers (except dividing by zero), the answer is always another rational number.

2. Commutative Property

  • Addition/Multiplication: Order doesn’t matter!

3. Associative Property

  • Grouping Doesn’t Matter: How you group numbers in addition/multiplication won’t change the answer.

4. Identity Elements

5. Inverse Elements

6. Distributive Property

Key Idea:
Rational numbers follow the same rules as whole numbers (like 2, 5, 10) but with fractions! These properties help us solve problems without worrying about the “type” of number.

Super Simple Explanation of the Denseness Property

Imagine a number line:

  • With whole numbers (integers): Between 1 and 2, there’s nothing (no other whole numbers).
    0 — 1 — 2 — 3
  • With rational numbers (fractions): Between any two fractions, you can always squeeze in another fraction—forever!
How? Let’s Play the “Halfway Game”!

Key Idea:

  • Integers: Like stepping stones—big gaps between them.
  • Rational Numbers: Like sand—infinitely many grains between any two points!

Fun Fact:
No matter how close two fractions are, you can always find another fraction in between. That’s the “Denseness Property”!

Finding Rational Numbers Between Two Given Numbers

Method 1: The “Halfway” Method

Method 2: The “Shortcut” (Numerator+Denominator Trick)

Method 3: The “Equal Gaps” Method

Method 4: Common Denominator Method

Key Idea:

  • Rational numbers are dense: You can always find infinite numbers between any two fractions!
  • Choose your method:
    • Halfway: Good for finding one or a few numbers.
    • Shortcut: Quick for simple fractions.
    • Equal Gaps: Best for finding many numbers at once.
    • Common Denominator: Useful for negative numbers or large ranges.

Simple Explanation of Decimal Representations

1. Terminating Decimals

2. Repeating (Non-Terminating) Decimals

Changing Decimals into Fractions

Exercise 1 (a)

Irrational Numbers Explained !

  • Rational Numbers: Can be written as fractions (e.g., 1/2 = 0.5, 1/3 = 0.333…).
  • Irrational Numbers: CAN’T be written as fractions! Their decimals go on forever without repeating.
    • Example: π (pi) = 3.141592653… (No pattern, just chaos! 🌀)
    • √2 = 1.414213… (Also chaotic! Try writing it as a fraction—you can’t!)

In Simple Words , “If rational numbers are “well-behaved” kids, irrational numbers are the ones who never follow the rules!”

root 2 on the numberline
Drawing Root 2 on the Number Line
  • The Wheel of Theodorus: A fun spiral to plot square roots!
    • Start with √1 (= 1), √2, √3, √4 (= 2), etc.Only perfect squares (like 4, 9, 16) are rational—the rest are irrational!

Activity: Draw a right-angled triangle with sides 1 and 1 → hypotenuse = √2. Plot it on a number line!

  • Real Numbers = Rational + Irrational Numbers.
    • Rational: Fractions, integers (e.g., -2, 0, 3/4).
    • Irrational: √2, π, 0.1010010001… (no pattern!).

Joke:

  • Teacher: “Is 2 a real number?”
  • Student: “Yes! I touched it on the number line!” ✋

4. Proving √2 is Irrational (Like a Detective!)

  • Assume √2 is rational: Let’s say √2 = a/b (simplified fraction).
  • Squaring both sides: 2 = a²/b²a² = 2b².
  • Uh-oh! is even → a is even → b must also be even.
  • Contradiction: If a and b are both even, the fraction wasn’t simplified! LIE DETECTED! 🚨

Punchline: √2 is the ultimate math rebel—it refuses to be a fraction!


5. Fun Examples

  • Rational: √9 = 3 (perfect square).
  • Irrational: √3 ≈ 1.732… (no fraction fits!).
  • Tricky One: 0.750750075000… (non-repeating = irrational!).

Quiz Time!
Which is irrational?
A) 0.5
B) √25
C) 0.123456789101112… (No pattern!)
(Answer: C!)


Key Takeaways

  1. Irrational numbers = Decimals that never end and never repeat.
  2. √non-perfect squares (like √2, √3) are irrational.
  3. Real numbers include all numbers on the number line.

Final Joke:

  • Why did π break up with √2?
  • Because their relationship was irrational! 😂

Want to plot √5 on a number line? Grab a ruler and let’s go! 📏✨

Exercise 1 (b)

Surds Explained Like a Pro ! 🤓✨


What’s a Surd?

Imagine you’re at a pizza party 🍕:

  • Rational numbers are like whole slices (1, 2, 3 slices). Easy to share!
  • Surds are like weird pizza cuts (√2 slices = 1.414… slices). You can’t cut them perfectly—they’re messy and never end!

Definition:
Surds are roots (like √ or ∛) that give irrational answers. They’re “leftover” numbers that refuse to be simple fractions!


Examples to Crack You Up! 😂

  1. √4 = 2 → Not a surd (it’s a happy whole number!).
  2. √2 ≈ 1.414… → Surd! (Never ends, never repeats—like your little sibling’s tantrums!).
  3. ∛8 = 2 → Not a surd (perfect cube!).
  4. ∛5 ≈ 1.709… → Surd! (Ugly decimal—just like your unfinished homework!).

Joke:
Why did √2 fail math class?
Because it couldn’t rationalize its behavior! 🤷‍♂️

Why Do We Care?

Surds are everywhere!

  • Building stuff: Engineers use √3 for triangles.
  • Nature: Flowers use the “golden ratio” (another surd!).

Fun Fact: Ancient Greeks hated surds so much, they drowned the guy who proved √2 is irrational! 🌊 (Don’t worry—math is safer now!).


How to Spot a Surd?

  1. Square roots: √(non-perfect square) = surd!
    1. √9 = 3 → Not surd.
    1. √10 ≈ 3.162… → Surd!
  2. Cube roots: ∛(non-perfect cube) = surd!
    1. ∛27 = 3 → Not surd.
    1. ∛20 ≈ 2.714… → Surd!

Surds are like math’s mystery boxes—you never get a neat answer! 🎁


Key Takeaways

  1. Surds = Roots that give never-ending, non-repeating decimals.
  2. Not surds = Roots that give whole numbers (like √16 = 4).
  3. They’re useful—even if they’re “irrational”!

Final Joke:
Why was √4 jealous of √5?
Because √5 had more decimals to play with! 😆

Try This! Is √25 a surd? (Hint: Nope—it’s a party-loving 5!) 🎉

Rationalizing the Denominator Explained Like a
Yo – Yo ! 🧠✨


What’s Rationalizing?

Imagine your fraction is a messy room 🏠:

  • The denominator (bottom number) has a crazy radical (like √5) crashing on your couch.
  • Rationalizing is like cleaning up—kicking out the radical to make the denominator a neat whole number!

Why? Because math loves tidy denominators (and so do teachers!).

How to Do It ? 3 Simple Rules!

  • Joke:
    Why did √7 break up with √7?
    Because their relationship was too square! 😆

Radicals in denominators are uninvited party crashers—multiply by their “twin” to kick them out! 🎉

  • Fun Fact:
    Cube roots need 3 parts to become whole—like a 3-piece chicken nugget! 🍗

Why Bother ?

  • Looks Cleaner: 1/√2 vs. √2/2 (Same number, but the second is fancy!).
  • Easier Calculations: Try adding 1/√3 + 2/√3… vs. √3/3 + 2√3/3.

Joke:
Why was the denominator afraid of √3?
Because it didn’t want to be irrational! 😱

Key Takeaways

  1. Goal: Make denominators radical-free.
  2. Method: Multiply top & bottom by the radical (or its “twin”).
  3. Result: A fraction that’s math teacher-approved! ✅

Pro Tip: Remember, rationalizing is like brushing your teeth—do it to keep your math healthy! 🪥➕➖

Rationalization Explained Like an Expert! 🎉

What’s Rationalization?

Imagine two irrational numbers (like √2 or √3) are superheroes 🦸♂️🦸♀️.

  • Alone: They’re messy (irrational).
  • Together: Their powers cancel out and make a rational number (neat and tidy)!

Joke:
Why did √3 and -√3 go to the party together? Because they cancel out the drama! 😂

What’s a “Conjugate Surd”?

  • Conjugate = Fancy word for “twin with the opposite sign.”
    • Example:
      • √7 + 3 and √7 – 3 are conjugates.
      • √a + √b and √a – √b are conjugates.

Why Care?

  • Multiplying conjugates kills the irrational part (like a math exorcism! 👻➗).

Punchline:
Conjugates are like math’s secret handshake—they make irrational numbers behave! 🤝


Key Takeaways

  1. Rationalizing Factor: A number that tames another irrational number (by multiplying).
  2. Conjugate Twins: Pairs like (√x + y) and (√x – y) that cancel out radicals.
  3. Goal: Turn messy denominators into clean whole numbers!

Fun Fact:
Even π doesn’t have a conjugate… because it’s too irrational to behave! 🥧


Try This!
What’s the conjugate of 4 + √2?
(Answer: 4 – √2 — Easy peasy!)

Final Joke:
Why was the math book sad after rationalizing?
Because it lost its radical personality! 😜

Rationalizing Denominators Explained Simply

Examples

Example 2: Rationalize These!

Example 3: Simplify After Rationalizing

Key Takeaways

  1. Monomial Denominators: Multiply by the radical’s conjugate to eliminate roots.
  2. Exponents Trick: Use a^{1-\frac{1}{n}}} to rationalize .
  3. Simplify: Always reduce fractions after rationalizing!

Pro Tip: Rationalizing is like “cleaning up” fractions—math loves tidy denominators! 🧹➗

Rationalizing Binomial Denominators – Simplified Guide

Key Takeaways

  1. Conjugate Magic: Multiply by the conjugate to vanish radicals.
  2. Simplify: Always combine like terms after rationalizing.
  3. Constants: Match rational/irrational parts to find  and .

Pro Tip: Rationalizing is like solving a puzzle—flip the sign, multiply, and simplify! 🧩


Rationalizing Trinomial Denominators

Exercise 1 (c)

Exercise – Chapter Test

error: Content is protected !!
Scroll to Top
icsehelp.xyz